
NO. 39 $2.50 AUGUST 1981

THE 6502/6809 JOURNAL

• •• „ • • •» . • J

i* ■

I 1111 i v i u u i i u g ^ v v i i v i i r - i^ |a » iv w v n u g a e v u v i i

Expanding the Superboard
^icrocrunch, Part 1 Improved nth Precision

v , .

Disassembling to Memory on AIM 65

!

SINGLE BOARD COMPUTER

OEM BUI''

You can use

MICRO PLUS

.v- h' v ■

MICRO PLUS is a 6502-based Single Board Computer

and power supply best suited to your application. As an
tl, it provides full RS232 and 20 mA communication at baud r.

Ith
extensive video capabilities, communications support and
interlace. As an OEM Building Block, it allows selection of the I
monitor, enclosure
Intelligent Terminal,.. ----- --------------------- —
from 50 to 19.2K, with superior text-editing features. It may be combined with F
PLUS to form a Sophisticated System with 8” and 5 % " diskettes, an IEEE-488 <
numerous I/O ports, up to 56K

{«■ 4 ; V
Video Features:
• Programmable screen format

up to 132 characters by 30 lines
• Reverse video on character-by-

character basis
• EPROM character set for user-

definable characters
• RAM c h a ra c te r set for

dynamically changing characters
under program control

• Light pen input
• Programmable character width
• Up to 4K display memory

Programmable baud rates from
50 to 19.2K baud

• Me m
• Auto-ir

*

Call or write for free catalog
Let us build your custom system.

■!

34 Chelmsford St., Chelmsford, MA 01824
617/256-3649

• MUN

Parity generation and checking • Sine
- Programmable word length and • Brei

stop bits • Break <
• Full-duplex or half-duplex

operation
• Both RS232C and 20-milliamp Editor Features:

current loop interfaces provided • Cursor up, doi
• ASCII keyboard interface home

• Scroll up/down
Insert/delete line or <

! be t
1K progra

■ MicroMon <
software in E

> Can be directl
DRAM PLUS, FLEXI PLUS
PROTO PLUS

• Single voltage required + 5 V

m

$375
50
10

m m

\ f
MICRO PLUS TCB-111

Communications option
Documentation

For US, add $3.00 surface postage.
Prices quoted are for US only. For
foreign shipments write for rates.
Massachusetts residents add 5% sales

16K RAM EXPANSION BOARD
FOR THE APPLE II* $1 9 5 .0 0

The Andromeda 16K RAM Expansion Board
allows your Apple to use RAM memory in place
of the BASIC Language ROMs giving you up
to 64K o f programmable memory. Separate
Applesoft* or Integer BASIC ROM cards are no
longer needed. The I6K RAM Expansion Board
works w ith the Microsoft Z-80 card, Visicalc,
DOS .3-3, Pascal, Fortran, Pilot, and other
software. A switch on the card selects either
the RAM language or the mainboard ROMs
when you reset your Apple.

The Andromeda 16K RAM Expansion
Board has a proven record for reliability w ith
thousands of satisfied customers.

N o w w ith O ne Year W arran ty .
‘ Apple II and Applesoft are trademarks.

ANDROMEDA
a

Distributed By:

INCORPORATED
P.O. Box 19144
Greensboro, NC. 27410
919 852-1482

C O M P U T E R
DATA

S E R V IC E S

P.O. Box 696
Amherst, NH. 03031
603 673-7375

the BEST <1 AND l> the BEST
keyboard bu ffer

* SHIRT KBY UPPER/LOWER CASE CONTROL

$ 119.95
+ More buffer .than others.
+ Clear buffer control.
+ "SHIFT key entry of upper/lower case.
+ Easy CTL key access to special chars

" I " ' I } - ! \ □
+ Allows BASIC programs w ith standard

INPUT to support Lower Case without
software modification.

Separately, they have more features
and out perform all the rest . But
together as a team they perform even
better. Look for the Graphics +Plus
soon . I t 's a RAM based character
generator to complement the Lower Case
+Plus. It will allow you to define the
character set to your needs. You could
load German, French, Sc ie ntific ,
Engineering or any other special
characters into the Graphics +Plus and
use it as if the Apple II was designed
specially for that application. And
th at 's not a l l . I f you define the
characters as graphics, you can do
extremely fast HI-RES type graphics on
the text screen without all those
cumbersome and slow HI-RES routines
and 8K screen. For all the details on
this triad of products, send for our
free booklet "Lower case adapters and
keyboard buffers from the inside out".

This booklet gives all the details
about lower case adapters and keyboard
buffers in general. It also has a
section on the Graphics +Plus (RAM
based character generator).

azer
MICRO SYS TEMS
1791-G Capital
Corona, CA 91720/
(714)735-1041

INC.

lower case adapter

GRAPHICS I LOWER CASE CHARACTER GENERATOR
FOR THE APPLE It COMPUTER$69.95

+ Normal & Inverse Lower Case.
+ 2 complete character sets on board.
+ G r a p h ic s c h a r a c te r fo n t b u ilt in .
+ E x p a n s io n so c k et a llo w s access to

external character sets.
+ 2716 EPROM compatible char generator.
+ More supporting software, (on diskette)
+ Keyboard +Plus & Graphics +Plus designed

around the Lower Case +Plus.

the Keyboard +Plus
The Keyboard +Plus is a multi-purpose input device for
your Apple I I . The first thing the Keyboard +Plus will

do for you is save you lots of time. When the old
adage "time is money" being more true than ever, you
naturally want to know how this device can save you
and your employees time. W e 'l l start with the input
buffer . With the normal Apple I I , you can only input
data when the computer is ready for it . Not when the
disk drive is running or when a printer without buffer
is operating, not when Applesoft is performing the
F R E (O) f u n c t i o n and not when the Apple is off
perform ing time consuming m ultiple calculations.
Sometimes these time (takers) take only a brief time
and sometimes they take a long time. Even if they only
take a brief time, the operator can loose his train of
thought and have to re-orient himself to get back to
speed. With the Keyboard +Plus' buffer, the operator
can keep right on typing. The buffer will store up all
those keystrokes until the computer comes back and
requests another input. In most conditions, you will
never be more than 2 or 3 keystrokes ahead of the
computer. At most, you w ill probably never have much
more that 35 or 40 characters ahead. The Keyboard
+Plus has room for 64 characters to be stored, which
is far more that you w ill probably need. The second
timesaver the Keyboard +Plus has to offer is the SHIFT
Key control of upper/lower case entry. You no longer
have to re-orient yourself from the typewriter style
keyboard and the Apple II keyboard every time you
switch from one to the other. The frustration of the
d ifferen c e without the Keyboard +Plus is worth the
cost alone. There are other benefits such as CTRL key
entry of a l l the s p ec ia l character you could not
access before and a lot of the Apple keyboard bounce
(getting two characters for one stroke) will disapear.
Besides these features, there is a keystroke command
to clear the buffer as well as RESET key protection
for the older Apples. With all these features, it 's no
wonder that Lazer Microsystems is becoming known as
the company that puts thought into all their products.

the Lower Case +Plus
The Lower Case +Plus is a plug in (not I /O slot) device
that w ill allow your Apple II to display lower case and
graphic characters on the video text screen. The Lower
Case +Plus is compatible with ALL word processors that
support lower c a s e . W ith an o p tio n al (extra cost)
character g en e rato r , it w i l l also allow some word
p ro c e sso rs , such as A pp lew riter and the 40 column
Easywriter, to display normal upper and lower case on
the screen with no software m odifications. The Lower
Case +Plus is compatible with all software that operates
with any other lower case adapter. However, since the
Lower Case +plus has features and capabilities that no
o th e r low er c ase adapter h as , there is softw are
available that will operate properly only with the Lower
Case + P lu s . Maybe that is the reason the Lower Case
+Plus has become the leading lower case adapter for the
Apple I I .

Lazer Microsystem s' products are in computer
stores a ll across the country. However, if you
cannot locate one, you can order direct from us.

* California residents must add 6% sales tax.
* Master Card & Visa (W/all vital info) welcome.
* Allow 2 weeks additional for checks to clear.
* Orders outside U .S .A . add $15.00 for shipping

s handling.

Lower Case +Plus, Keyboard +Plus* and Graphics
+Plus are trademarks of Lazer Microsystems,
In c ., Corona, CA.

Apple II and Applewriter are trademarks of Apple
Computer, In c ., Cupertino, Calif.

Easywriter is a trademark of Cap'n Software, and
produced by Inform ation Unlimited Software,
In c ., Berkeley, Calif.___________________________________

2 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

MICRO
THE 6502/6809 JOURNAL

STAFF

Editor/Publisher
ROBERT M. TRIPP

Associate Publisher
RICHARD RETTIG

Associate Editors
MARY ANN CURTIS
FORD CAVALLARI

Special Projects Editor
MARJORIE MORSE

Art Director
GARY W. FISH

Production Assistant
LINDA GOULD

Typesetting
EMMALYN H. BENTLEY

Advertising Manager
CATHI BLAND

Circulation Manager
CAROL A. STARK

Dealer Orders
LINDA HENSDILL

MICRO Specialists
APPLE: FORD CAVALLARI
PET: LOREN WRIGHT
OSI: PAULGEFFEN

Comptroller
DONNA M. TRIPP

Bookkeeper
KAY COLLINS

Sales Representative
KEVIN B. RUSHALKO
603/547-2970

DEPARTMENTS
4 Letterbox and Microbes
5 Editorial

14 PET Vet
74 New Publications
80 Hardware Catalog

104 Software Catalog
107 6502 Bibliography
111 Advertisers’ Index

ARTICLES
MICROCRUNCH: An Ultra-fast Arithmetic7 Computing System, Part 1 ..John e. Hart
Fast floating point processing on the Superboard II

-i o It’s Time to Stop Dreaming, Part 3 Robertm . Tripp
• W More information on the 6809

p H Improved nth Precision.. Glenn r . Sogge
Code optimization for small systems

2 5 Disassembling to Memory with AIM 65 Larry p. Gonzalez
Clean up disassembled code with AIM text editor

2 9 Sorting... William R. Reese
A new application of Quicksort applied where individual members cannot be moved

0 0 Expressions Revealed, Part 2 Richard c. vile, Jr.
BASIC and Pascal programs demonstrate the translation process

7 7 Common Array Names in Applesoft II........................ Steve Cochard
A new command for Applesoft II
Applesoft Error Messages from

8 6 Machine Language... Steve Cochard
Understand and use methods and data needed to utilize Applesoft error messages

Q 7 Expanding the Superboard..Jack McDonald
^ ' Build your own expansion board for the Superboard

PRINTER BONUS
g o On Buying a Printer..Loren Wright
^ Tips to help you purchase the right printer
Q 0 Using a TTY Printer with the AIM 65Larry P. Gonzalez

Output to a teletype printer without restricting the use of the keyboard
4 Q A $200 Printer for C1P and Superboard............... Louis A. Beer

Hardware modifications and software considerations are presented
4 2 C"1 p t0 Epson MX-80 Printer.InterfaceGary e . wolf
^ A circuit is presented to interface the C1P to a popular printer
A A Utilities for the Paper Tiger 460 Terry L. Anderson

BASIC and machine language programs present two utilities
c o PET/CBM IEEE 448 to Parallel Printer Interface.. . Alan Hawthorne
^ This interface maintains compatibility with PET BASIC CMD and PRINT# commands
c -7 An Inexpensive Printer for Your Computer........... Michael J. Keryan
J Circuit and software allow a printer to be interfaced to your 6502’s parallel I/O port

APPLE BONUS

83
o -| The Extended Parser for the Apple IIPaul R. Wilson
® This program allows easy control of functions

SEARCHfi.C. Merten
This utility routine aids in the writing and editing of programs in Integer BASIC

8 8 Trick DOS ... Sanford M. Mossberg
Easily use DOS by changing any command to fit your needs

Q 2 Sorting with Applesoft............ Norman P. Herzberg
An Applesoft BASIC program for a sorting algorithm is presented

No. 39 - August 1981 MICRO - The 6502/6809 Journal 3

/AlCftO
Letterbox
and Microbes
Dear Editor:

As a long-time supporter of the 6800
and 6502 families, (I was one of the
first dealers to sell Apple I, OSI
C h a lle n g e rs and SW TP M 68 0 0
microcomputers), I am glad that
MICRO will now cover the 6809. This
greatly improved micro offers so many
advantages, that new users rave about
this chip once they understand it. I am
sure your excellent series will en­
courage many to try it. The SS-50 Bus
users are about a year ahead in the
understanding and use of the 6809, but
I am sure that the Apple, PET/CBM,
SYM, KIM, and AIM users will catch
up fast. We have to welcome a new
group into the fold — the TRS-80 Color
Computer users. They not only use the
6809, but they can cable into the SS-50
Bus for expansion, before Radio Shack
offers it to them.

The point that I really would like to
make is that 6809 is an interim pro­
cessor. For all it 's excellence, it is a
forerunner to the M68000, which is the
microprocessor of the future. The
M 68000 is so far above anything we use
today that we will need all the
technical help we can get, to under­
stand it and use its great power. I would
like MICRO to not only raise our sights
to the 6809, but beyond it to the 68000.
Thank you for your excellent magazine.

Stanley Veit

We'd like to take this opportunity
to thank everyone who has written.
Unfortunately we cannot publish all
the letters that we receive. However,
your letter has a better chance o f being
published i f you are brief, to the point,
and cover only one topic per letter.

fan Skov o f Denmark sent this note:

In MICRO (36:37) you made a
disastrous comment SYM-BASIC does
indeed support integer variables. Your
mistake is understandable as the
manual nowhere mentions %-type
variables.

I know that integer variables work
because I never bothered to read the
manual; I just programmed and assumed.
Please tell your readers!

Mark L. Crosby of Washington,
D.C., sent this microbe:

In the June issue of MICRO some
errors of omission occurred in Alan
H ill's article "Amper Search for the

Apple" (37:71). These might be dif­
ficult for novice assembly language pro­
grammers to figure out.

Although the original program was
created with a different assembler, the
corrections in figure 1 were done on the
Apple Tool Kit Assembler/Editor (by
Apple Computer Inc.).

The corrections begin at the section
headed "DATA STORAGE."

954D Cl CD DO ASC 1AMPER-SEARCH'
9570 C5 D2 AD
9573 D3 C5 Cl
95 76 D2 C3 C8
9579 Cl CC Cl ASC 'ALAN G. H I L L ‘
95 7C CE AO C7
95 7F AE AO C8
95 82 C9 CC CC
9585 C3 CF CD ASC •COMMERCIAL RIGHTS'
9588 CD C5 D2
958B C3 C9 Cl
958E CC AO D2
9591 C9 C7 C8
9594 D4 D3 AO
95 97 D2 C5 D3 ASC 'RESERVED1
959A C5 D2 D4
959D C5 C4
95 9F CB 93 LOC DFB $ C B , $93 ; DEALLO-1
95A1 23 92 DFB ♦ 23 , $92 ; S'EARCH-1
95 A3 44 CHRTBL DFB $44 ; D
95A4 53 DFB $53 ; s
95A5 8D MSG 1 DFB $ 8D ; <CR>
95A4 D& Cl D2 ASC 'VARIABLE'
95A9 C9 Cl C2
95 AC CC C5 AO
95 AF AO AO AO NAHE ASC 1 1 ; H SPACES
95B2 AO AO AO
95B5 AO AO AO
95B8 AO AD AO
95 BB AO AO AO
95BE AO
95 BF 8D DFB $ 8D ; < CR>
95CD CE CF D4 ASC 'NOT FOUND'
95C3 AO Ci CF
95C4 D5 CE C4
95C9 CO DFB '8 ' ; CTRL-L
95 CA AO AO AO SV5 0 ASC 1 1 ; 6 SPACES
95 CD AO AO AO
9500 AO A0 AO ZPSV ASC I 1 ; 32 SPACES
95D3 AO A0 AO
95D4 AO AO AO
95D9 AO AO AO
95DC AO AO AO
95DF AO AO AO
95E2 AO AO AO
95E5 AO AO AO
95E8 AO AO AO
95 EB AO A0 AO
95EE AO AO Figure f

4 MICRO - The 6502/6809 Journal No. 3 9 -A ugust 1981

About the Cover
Ilk

si

w
T h* Printer Revolution

Just as processor technology has ex­
ploded in the past several years, so has
printer technology. Printers available
today offer several times the features of
yesterday's printers, at a fraction of the
price. The old mechanical monstrosi­
ties, so common in computer rooms
before the microprocessor boom, could
hardly produce a legible, life-long hard
copy, let alone a letter-quality'output.
Now, a new breed of printer, controlled
by microprocessor instead of relays,
can produce graphical output as well as
a variety of printing fonts. Parallel in­
terfaces have enabled these printers to
output at much greater speeds than
their ancestors. And along with the in­
crease in versatility, quality, and
speed, in the past several years we have
seen a noticeable decline in price! This
decline is due in part to new
technologies in thermal and dot-matrix
printing, and in part to the commercial
popularity of such printers. In this
issue, with its special printer section,
MICRO salutes the "printer revolu­
tion.”

JMCftO is published monthly by:
MICRO INK, Inc., Chelmsford, MA 01824
Second Class postage paid at:
Chelmsford, MA 01824 and Avon, MA
02322

USPS Publication Number: 483470
ISSN: 0271-9002
Send subscriptions, change of address, USPS
Form 3579, requests for back issues and all
other fulfillment questions to
MICRO
P.O. Box 6502
Chelmsford, MA 01824
or call
617/256-5515
Subsciiption rates
U.S.
Foreign surface mail
Ail mail:
Europe
Mexico, Central America
Middle East, North Africa
South America, Central Africa
South Africa, Far East,
Australasia

Copyright© 1981 by MICRO INK, Inc.
All Rights Reserved

PeiYeai
$18.00
$21.00

$36.00
$39.00
$42.00
$51.00
$60.00

/AlCftO
Editorial

This issue marks an unusual and impor­
tant occasion for MICRO. After thirty-
eight consecutive editorials, the first of
which appeared back in 1977, Editor/
Publisher Bob Tripp has finally decided
to take a break. Thus, the task of writing
this month’s editorial has been passed
to the editorial staff, and has landed on
me! My name is Ford Cavallari, the Ap­
ple specialist at MICRO and the editor
of the series MICRO on the Apple. Star­
ting this month, I assume additional
responsibilities for the magazine as an
associate editor. Let me take this oppor­
tunity to share with you some thoughts
that I, along with the rest of the staff,
have been having about the magazine's
course.

This month, the first non-system
oriented bonus section makes its ap­
pearance in our magazine. In June, as
you may recall, we enlarged MICRO, in
part to extend our coverage of the Apple,
and in part to expand our coverage of
other systems and other areas, The two
bonus sections which now appear in
each issue afford us quite a bit of
editorial flexibility, and this flexibility
is reflected in this month's special
printer bonus. With this new format, we
have tackled an in-depth special on
printers without sacrificing other areas
of the magazine's coverage. In fact, we
did it with ease, and still provided ad­
ditional Apple coverage!

In the coming months, we will be
presenting more widely varied bonuses,
ranging from more system-oriented
coverage of the PET, the OSI, the Apple,
and the single boards, to some more
concept-oriented features on topics like
games, computer languages, and the
6809.

I am particulary excited about the
coming games bonus section which will
be appearing in November. While
MICRO has historically leaned more
toward the serious computer user than
toward the gamester (see September
1980 Editorial, 28:5), we do realize, and
concede, that there are few microcom­
puter demonstrations quite as graphic or
fun as a good game. Also, there are very
few ways to get children interested in

computers, aside from games. Our
games bonus section will feature games
articles, games programs, and games
advertising, just in time for the gift-
giving season. If you have original
material which you feel would be ap­
propriate for this section, please send it
in, and we will consider it. We plan each
issue months in advance, so send us
your original games and articles quickly.

Another coming feature is our Pascal
bonus section, scheduled for January.
Pascal is now available on many
microprocessors, and will soon become
available on more. It is evident, in both
the micro and mainframe communities,
that Pascal is going to be very important
in the future. The Pascal bonus section
should be of interest to the novice and
expert alike, for it will include both in­
troductory tutorial material and pro­
grams demonstrating advanced tech­
niques. Other languages to be featured
in future bonuses are FORTH, BASIC,
and assembly language.

OSI reasders will notice the ommis-
sion this month of the Small Systems
Journal. The Journal has not moved to
another publication. Rather, it has been
suspended indefinitely by Ohio Scien­
tific. We regret this, because we believe
the Journal provided OSI users with a
valuable service in a format unique to
the microcomputer industry. If you feel
strongly about the Journal, why not let
OSI hear directly from you in writing! In
the mean time, keep the OSI articles
coming in and keep reading MICRO as
we schedule more OSI bonuses.

One last word on the Reader Survey
Form appearing in last month's MICRO.
When Bob Tripp started MICRO back in
1977, it was partially due to the fact that
he felt the 6502 community to be a more
cohesive, enthusiastic group than, say,
the 8080 community. The tremendous
response that we've gotten so far from
the Reader Survey indicates that your
group enthusiasm has not waned. If you
haven’t sent in your form, and if you
wish to have a direct influence on the
magazine, here is your chance. In order
for us to schedule features and bonuses,
we have to have some idea of who is go­
ing to read them. Thanks for the
response so far. Let's make it 100 per
cent.

No. 3 9 -A ugust 1981 MICRO - The 6502/6809 Journal 5

OSI AARDVARK
NOWMEANS BUSINESS!

OSI
W ORD PROCESSING THE EASY W A Y -

W ITH M AXI-PROS
This is a line-oriented word processor de­

signed for the office that doesn't want to send
every new girl out for training in how to type a
letter.

It has automatic right and left margin justi­
fication and lets you vary the width and margins
during printing. It has automatic pagination and
automatic page numbering. It will print any text
single, double or triple spaced and has text cen­
tering commands. It will make any number of
multiple copies or ch'ain files together to print an
entire disk o f data at one time.

M AXI-PROS has both global and line edit
capability and the polled keyboard versions
contain a corrected keyboard routine that make
the OSI keyboard decode as a standard type­
writer keyboard.

M AXI-PROS also has sophisticated file
cap ab ilities . It can access a file for names and
addresses, stop for inputs, and print form letters.
It has file merging capabilities so that it can store
and combine paragraphs and pages in any order.

Best of all, it is in BASIC (0S65D 5 1 /4 " or
8" disk) so that it can be easily adapted to any
printer or printing job and so that it can be sold
for a measly price.
MAXI-PROS - $39.95

- TH E EOSON PACK
ALU M A C H IN E CODE GAMES

FOR TH E 8K C1P
INTERCEPTOR -Y o u man a fast interceptor
protecting your cities from Hordes of Yukky
Invaders. A pair of automatic cannon help out,
but the action speeds up with each incoming
wave. It's action, action everywhere. Lots of
excitement! $14.95

MONSTER M A ZE — An Arcade style action
game where you run a maze devouring monsters
as you go. If cine sees you first, you become
lunch meat. Easy enough for the kids to learn,
and challenging enough to keep daddy happy.
$12.95

C O LLID E — Fast-Paced lane-switching excite­
ment as you pick up points avoiding the jam
car. If you succeed, we'll add more cars. The
assembler code provides fast graphics and smooth
action. $9.95
SPECIAL D E A L -T H E E N TIR E EDSON P A C K -

A L L TH R EE GAMES FOR $29.95

TH E A A R D V A R K JO U RN A L
FOR OSI USERS — This is a bi-monthly

tutorial journal running only articles about OSI
systems. Every issue contains programs custom­
ized for OSI, tutorials on how to use and modify
the system, and reviews of OSI related products.
In the last two years we have run articles like
these I

1) A tutorial on Machine Code for BASIC
programmers.

2) Complete listings o f two word processors
for BASIC IN ROM machines.

31 Moving the Directory o ff track 12.
4) Listings for 20 game programs for the OSI.
5) How to write high speed BASIC — and

lots more —
Vol. 1 (1980) 6 back issues - $9.00
Vol. 2 (1981) 2 back issues and subscription for
4 additional issue!; - $9.00.

ACCOUNTS RECEIVABLE - This program
will handle up to 420 open accounts, it will age
accounts, print invoices (including payment
reminders) and give account totals. It can add
automatic interest charges and warnings on late
accounts, and can automatically provide and cal­
culate volume discounts.

24K and 0S65D required, dual disks recom­
mended. Specify system.
Accounts Receivable. $99.95

* * * SPECIAL D E A L - NO LESS! * * *

A complete business package for OSI small
systems — (C1, C2, C4 or C8). Includes M A X I-
PROS, G E N E R A L LEDGER, IN V E N T O R Y ,
P A Y R O LL A ND ACCOUNTS R ECEIVAB LE -
A L L TH E PROGRAMS TH E SM ALL BUSI­
NESS M A N NEEDS. $299.95

P.S. We're so confident o f the quality of these
programs that the documentation contains the
programmer's home phone number!

SUPERDISK II
This disk contains a new B EXEC* that boots

up with a numbered directory and which allows
creation, deletion and renaming of files without
calling other programs. It also contains a slight
modification to BASIC to allow 14 character
file names.

The disk contains a disk manager that con­
tains a disk packer, a hex/dec calculator and
several other utilities.

It also has a full screen editor (in machine
code on C2P/C4)) that makes corrections a snap.
We'll also toss in renumbering and program
search programs — and sell the whole thing for —
SUPERDISK II $29.95 (5 1 /4"! $34.95 (8").

ANDFUN,
TOO!

BOOKKEEPING THE EASY W AY
- W IT H BUSINESS I

Our business package 1 is a set of programs
designed for the small businessman who does not
have and does not need a full time accountant
on his payroll.

This package is built around a G ENERAL
LEDGER program which records all transactions
and which provides m onthly, quarterly, annual,
and year-to-date PRO FIT A ND LOSS statements.
G EN ER A L LEDGER also provides for cash
account balancing, provides a BALANCE SHEET
and has modules for D EPREC IA TIO N and
LOAN ACCOUNT computation.
G E N E R A L LEDGER (and MODULES) $129.95.

P A YR O LL is designed to interface with the
G E N E R A L LEDGER. It will handle annual
records on 30 employees with as many as 6
deductions per employee.
P A Y R O L L - $49.95.

IN V E N TO R Y is also designed to interface with
the general ledger. This one will provide instant
information on suppliers, initial cost and current
value of your inventory. It also keeps track of the
order points and date of last shipment.
IN V E N TO R Y - $59.95.

GAMES FOR A LL SYSTEMS
G A L A X IA N - 4K - One of the fastest and finest
arcade games ever written for the OSI, this one
features rows of hard-hitting evasive dogfighting
aliens thirsty for your blood. For those who
loved (and tired of) Alien Invaders. Specify
system — A bargain at $9.95

M IN O S - 8K - — Features amazing 3D graphics.
You see a maze from the top , the screen blanks,
and when it clears, you are in the maze at ground
level finding your wav through on foot. Realistic
enough to cause claustrophobia. — $12.95

N E W - N E W - N E W

LA B Y R IN T H - 8K - This has a display back­
ground similar to M INOS as the action takes
place in a realistic maze seen from ground level.
This is, however, a real time monster hunt as you
track down and shoot mobile monsters on foot.
Checking out and testing this one was the most
fun I've had in years! — $13.95.

T IM E TR E K - 8K - Real Time and Real graphics
Trek. See your torpedoes hit and watch your
instruments work in real time. No more un­
realistic scrolling displays! — $9.95

SUPPORT ROMS FOR BASIC IN ROM M A ­
C HINES — C1S/C2S. This ROM adds line edit
functions, software selectable scroll windows,
bell support, choice of OSI or standard keyboard
routines, two callable screen clears, and software
support for 32-64 characters per line video.
Has one character command to switch model
2 C1P from 24 to 4 8 character line. When in­
stalled in C2 or C4 (C2S) requires installation
of additional chip. C1P requires only a jumper
change. — $39.95
C1E/C2E similar to above but with extended
machine code monitor. — $59.95

Please specify system on all orders
This is only a partial listing of what we have to offer. We now offer over 100 programs, data sheets, ROMS, and boards

^ for OSI systems. Our $1.00 catalog lists it ail and contains free program listings and programming hints to boot.

AARDVARK TECHNICAL SERVICES, LTD.
^ 0 1 2352 S. Commerce, Walled Lake, Ml 48088
U o l (313)669-3110

%
OSI

6 MICRO - The 6502/6809 Journal No. 39 - August 1981

MICROCRUNCH:
An Ultra-fast Arithmetic

Computing System
P art 1

Extremely fast floating point
processing can be attained by
coupling an INTEL 8231
arithmetic processing unit to the
OSI Superboard II and using a
partial compiler to generate
machine code representations of
mathematical equations and
loops written In BASIC.

John E. Hart
Dept, of Astrogeophysics
University of Colorado
Boulder, Colorado 80309

An editorial in BYTE magazine (BYTE,
vol. 5, number 10, Oct. 1980) quoted a
survey that indicated that 40% of the
readers of that microcomputer magazine
were scientists or engineers. Obviously
a very large number of small system
users got into microcomputing because
they hoped to use their machines for
mathematical problems occurring in
these fields. Although many applica­
tions of 6502 processors have been in
tasks that do not require sophisticated
mathematical manipulation |like gra­
phics, games, word processing, etc.)
there is certainly a host of interesting
and/or practical problems that can be
approached via numerical analysis on a
microcomputer. These problems span
the entire spectrum of mathematical
modeling, from ecosystems to weather
systems, from circuit analysis to sup­
port calculations in data analysis.

Such applications are only limited
by the product of the floating point
throughput |or speed) of the micro­
processor and associated software, and
the patience of the operator to wait
around for the answer. It is often most
profitable and convenient to approach
m athem atical. problems in an inter­
active mode, where, for example, a
problem depending on a certain para­
meter is iterated to an end point. The
result is then inspected by the operator,

the parameter varied, and the solution
repeated, until the desired answer is ob­
tained. Such a scheme would be fruitful
if the iteration time is fairly short. If you
have to wait half an hour between
answers it can be very frustrating. The
iteration time is, of course, proportional
to the length of the mathematical prob­
lem, in terms of the total number of
floating point operations per iteration,
divided by the effective computing
speed of the machine being used. Unfor­
tunately when it comes to floating point
number crunching, microcomputers can
be annoyingly slow. The purpose of this
series of two articles is to describe a
6502-based- system called MICRO­
CRUNCH that is extremely fast at
floating point mathematical number
crunching.

The system consists of an OSI Super­
board II with the 610 board memory ex­
pansion, interfaced to an INTEL 8231
math chip, which will be discussed
later, in detail. This article describes the
hardware necessary to accomplish this
interface.

True number crunching speed is only
possible if such a math chip is treated as
a co-processor in the sense that floating
point operations executed by the 8231
are done asynchronously as the 6502 is
preparing for the next operation. Thus a
special BASIC compiler that converts
higher order statements into optimal
6502 machine code is a must if the
potential for fast execution inherent in
the 8231 is to be realized. Part 2 of this
series will describe the software
necessary to do this. We start by in­
dicating what kind of speeds can be
attained with the MICROCRUNCH
system.

Computing speed for mathematical
applications is usually measured in
terms of megaflops |Mflops); or millions
of floating point operations (+ , - , *, /)
that a computer, plus associated support
software can execute per second. Obvi­
ously no one expects a micro to compete
with a 32-bit mainframe designed

specifically to do scientific computing,
but it is interesting to compare a few
typical systems in this regard and to
note how well a little 8-bit micro can
perform. Computing speed can be crude­
ly estimated by running the following
simple benchmark program on several
machines.

A =1.00013
X=1
FOR I = 1T040000
X = X * A
NEXT I
PRINT X
STOP

From this, one gets a pretty good idea of
the Mflop capability of a machine, since
usually, the overhead for the FOR loop
part of this little program is small com­
pared to the time it takes to look up the
variables X and A, and to perform the
multiplication. I have tried this little
loop on a variety of computers, some of
which used a FORTRAN version. The
results are shown in table 1.

There are several conclusions that
can be made from this table, such as:

1. Traditional 6502 or Z-80 machines
with BASIC interpreters are quite
slow, doing about 100 to 200 flops
per second. A calculation with
10,000 flops would take a couple of
minutes, which is too slow for com­
fortable interactive computing.

2. The use of a compiler |Pascal or
FORTRAN) on the straight 6502
machines only helps by a factor of 2
or so in speed. Although for a com­
piler the variable fetch and line
decode times go way down, the time
for actual addition, division, etc., in
floating point stays the same.

3. Increasing the computer clock helps
in direct proportion to the clock in­
crease. At most, this might gain a
factor of 4 if the typical 6502 micro
can be made to run at 4 MHz.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 7

Table 1: Approximate Megaflop Rates for Several Computing Systems

Computer Language Mflop
(million flops/sec)

TRS80 model I (Z-80) BASIC interpreter .00012
TRS80 model II (Z-80) If It .00026
INTERCOLOR (Z-80) •• 11 .00014
APPLE n (6502, 1 MHz) .00019
APPLE n Pascal compiler .00034
APPLE E w/AMD9511 floating

point board (Calif. Digital) APPLEFAST interp. .00026
OSI Superboard II (1 MHz) BASIC interpreter .00022
OSI Superboard II (2 MHz) " a .00044
PDP1103 w/Hdw. floating FORTRAN .004

point board (DEC)
‘ MICROCRUNCH (OSI 2 MHz BASIC compiler .011

+ INTEL 8231)
PDP 1134 FORTRAN .04 approx.
VAX 11/750 (DEC) .4 "
CDC 7600 / t 4-6 ”
CRAY I tl 60 *>

Figure 1: MICROCRUNCH Hardware

4. Floating point chips without com­
pilers are almost useless.

5. The optimal 8-bit system described
here outperforms many standard
minicomputers, at a fraction of their
cost.

6 . If you want personal number crunch­
ing in excess of around .01 Mflops
(104 floating point operations per sec­
ond), be prepared to spend a large
amount of money.

Assuming the reader is interested in
attaining floating point throughput in
excess of 50 times die typical micro per­
formance, we proceed to outline the
MICROCRUNCH hardware, including
circuits, a layout, and a parts list.

The Hardware

The physical system is shown in
figure 1. The basic computer is the OSI
Superboard II. It has been connected to a
fully populated OSI 610 memory board.
Thus the starting element is essentially
a 6502 computer with 32K of RAM. The
610 board has an expansion plug that
contains buffered data, address, phase
two, read/write, and interrupt lines.
This is connected to the arithmetic pro­
cessor board (APB) whose circuit is
given below. This APB board could be
connected to any 6502 system that has
available the same buffered lines as on
the OSI 610. These are given in more
detail in table 2 .

Thus, in principal, the APB circuit
can be used on a variety of machines
(AIM, Apple, etc.) provided the address
assigned to the arithmetic processor
does not conflict with the memory map
of the host computer. Because the com­
piler described in part 2 of this article
uses up 20K of memory, and the upper
12K of this system is needed for source
and object code storage, there is not
much room left for a disk operating
system. So, I use magnetic tape as a bulk
storage medium. This would not be
necessary if a machine with 48K of RAM
were employed. However, the tape
storage system I use is almost as fast as
disk, so there is little performance loss
here (see "An Ultra-Fast Tape Storage
System,” J.E. Hart, MICRO, November
1980, 30:11).

In addition I have jumped the fund­
amental clock on my Superboard up to 2
MHz as described by J.R. Swindell
(“The Great Superboard Speedup,”
MICRO, February 1980, 21:30). The
riming for the MICROCRUNCH system
in table 1 was with a 2 MHz clock. For 1
MHz, the Mflop rate is .007. The tape

baud rate and clock modifications are
not necessary for successful operation of
the APB, but they are useful changes that
increase performance and convenience.

The APB part of the system consists
of an address decoder, a data bus buffer,
a read/write/command/data decoder
and the INTEL 8231 arithmetic process­
ing unit. In order to understand the cir­
cuits that follow it is necessary to give a
brief description of the 8231.

Anyone getting into this project
should obtain the 8231 manual from a
local INTEL representative, since only a
brief sketch of the processor can be
given here. When ordering this part, be

sure to get the C8231, since this will run
at 4 MHz and the regular 8231 will not.
The 8231 has the following features of
interest:

1. An operand stack that stores 4
floating point numbers with 6Vi
decimal digit precision and a range of
about 10±J0. Each floating point number
is represented by 4 bytes: 1 for the expo­
nent and 3 for the mantissa. The floating
point format will be discussed in part 2 .
It is, unfortunately, not the same as that
used by Microsoft BASIC.

2. A 1-byte status register that can
be read into the 6502. This status
register contains a busy bit that in-

8 MICRO - The 6502/6809 Journal No. 39 - August 1981

Table 2: Connector J2a on Arithmetic Board

Pin
1
2
3
4

10

11
12
13
15
18
19
28

29
30
31
33

34
35
36
37
38
39
40

Function
buffered address bus bit 0

ti n n n ^
11 ** ” n 2
n >• m *• 3

buffered data bus bit 0
n n " " 1
a a i' a 2
a n " a 3

buffered read/write (read to 6502 if high)
data direction (enable read to 6502 if low)
buffered phase 2 clock
buffered data bus bit 4

buffered address bus bit 8
9

” 10
" 11
" 12
” 13
" 14
» 15

Figure 2; Address Decoder Circuit

ADDRESS BUS
J2
33

y*
35

36

37

38

39

M

A9

A10

All’

Al2

A13
klk
A15

7430

PCWER
+5 pin 14 except 7415^
0 pin 7 +5 pln 24

0 pin 12
9 s,

8T28-1,15

Data Direction
J2-18

I/O STRCBES

dicates whether a previously initiated
floating point command is still in pro­
gress, and an error field that indicates if
the previously completed command
resulted in an error (overflow ,
underflow, divide by zero, improper
function argument like square root of a
negative number, etc.).

3. A 1-byte command register that is
written into by the 6502. This initiates a
floating point operation on the
operand(s) that are stored on the stack in
the 8231. These operations include + ,

*, / and a host of transcendental
functions like SIN, COS, ARCTAN, etc.
(See the manual for a complete descrip­
tion of these.) Suffice it to say that just
about any problem you could have done
with Microsoft BASIC you can do
within the 8231, only much faster. The
result of a calculation or operation ap­
pears on the top of the stack and can
hence be read as a four-byte block
transfer back into memory, under con­
trol of the 6502. These manipulations
and some quirks of the floating stack are
discussed in part 2, since they have
more to do with software than hardware.

The scenario that emerges is as
follows: A mathematical program writ­
ten in BASIC is compiled by the 6502.
There the object code, so generated,
causes appropriate 4-byte transfers in
and out of the APB, of floating point
variables appearing in the mathematical
expressions that were compiled. The
6502 also sends operation commands at
the appropriate times and checks for
errors after an operation is completed.
Thus the main task of the hardware is to
allow the 6502 to transfer data in and
out of the 8231 stack, command, and
status registers. Thus, we are really con­
cerned with a fast I/O problem.

Readers of the 8231 manual will note
that it also does fixed point arithmetic
(16- or 32-bit). None of these functions
are used in the MICROCRUNCH
system, but software could be written to
use these if needed.

Circuit Description

Described below is the circuit for the
APB and its interconnections to the 610
board. The components for this board,
all bought retail, cost about $340, with
$270 going for the INTEL C8231. In ad­
dition, the 8231 uses 12V DC so a
regulated supply of some sort (low cur­
rent, 100 mA is fine) is needed. It should
be mentioned here that the 8231 is iden­
tical in architecture and pin-outs to the
older AMD 9511. The latter chips are a
little cheaper ($195), but are designed to

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 9

Figure 3: Bus Buffer

Data Bus

J2a
10

11

12

13

C823I

28

29

30

31

D0 3

D1 6

D2 10

D3 13

7410-8

D4
3

D 5 6

D6 10

D? 13

9T28a.

2

±J
5

7

11

9

14
12

2

Err
8T28b 11

JA_
12

10

11

12

13

14

15

run at 2 MHz instead of 4 MHz. I went
with the INTEL because the speed in­
crease seemed worth the extra money.

The main interface with the 610
board is via its connector J2. This 40-pin
connector is linked to a similar 40-pin IC
socket-type connector on the APB with
a ribbon cable. Table 2 shows the lines
available on J2 that are used on the APB.

In addition to this interface, an addi­
tional connector J3 must be used to sup­
ply the following signals from the Super­
board itself. In my unit this is a 14-pin
IC socket connected by a ribbon cable to
a similar socket set in. one of the proto­
type holes in the Superboard.

13-1 4 MHz clock
(SBD n, U 30- 2)

J3 -2 Ground
J3 -3 BRK line (low = reset)

(SBD U 8-40)

The APB circuit will work with any
6502 computer that supplies the I/O
connections as described above.

Figure 2 shows the address decoder
circuit. Address lines 8 through 15 are
fed into an 8 input nand gate, and line 10
is inverted. The output of this gate will
go low whenever the address high byte
goes to $FB. This is the basic block ad­
dress for the APB. The output of this
gate is fed to one enable input of a 74154
4-to-16-line demultiplexer, and to a set
of inverters and gates whose purpose is
to generate a data direction pulse in
phase with the 02 clock pulse. The out­
puts of the 74154 are a set of strobes that
go low in phase with 02 whenever ad­
dress FB is selected. Only one strobe is
fired, depending, as well, on the R/W,
A0, A l, and A2 lines. These strobes can
be used to select various I/O devices, 16
in all. For the APB we shall use only 5 of
these lines, so the others can be used for
future expansion (A-D, D-A, etc.). The
data direction pulse does two things. It
informs the data buffers on the 610
board when data is going to be fed back
to the 6502 (J2-18, low = read) and after
inversion, chip 7410-8 does the same for
the data buffers just ahead of the 8231.

Figure 3 shows the interconnections
for the two on-board 8T28 tri-state buf­
fers needed to drive the cable connecting
the APB to the 610 board.

Finally, figure 4 shows the intercon­
nections between the strobe lines from
the address decoder and the 8231. Dur­
ing a write operation pin 1 of the 7402
NOR gate will go low. This signal is in­
verted and fed through another part of
the 7402 quad NOR gate to give a low
CHIP-SELECT pulse. The 8231 timing
requirements indicate that the active
low WRITE pulse must be shorter than
the CHIP-SELECT input so the WRITE
strobe is shortened by feeding into a
74123 one-shot. If an operand is being
written onto the 8231 floating stack, pin
21 must go low. This is accomplished
by sending the inverted WRITE
OPERAND strobe to 7402-8. The
resulting inverted OR p_ulse then
becomes the appropriate C/D line.

A read of either the operand stack or
the status register is preceded by a READ
INITIATION strobe. For example, a
READ STATUS START strobe (e.g. LDA
ABS FB00) sets flip-flop 74LS76A. The

Power:

+5 pin 16
0 pin 8

output of this flip-flop goes high and
causes the CHIP-SELECT line (APU-18)
and the READ line (APU-20) both to go
low. The 8231 then proceeds to send the
status register contents to its internal
data bus buffer. This takes several clock
cycles (like an EPROM), so data is not
entered into the 6502 accumulator until
a READ ENTER strobe is fired. That is,
flip-flop A stays set until an LDA-ABS
FB06 instruction is executed. Then
strobe line 74154-16 goes low ter­
minating the read by resetting the flip-
flop on its rising edge.

Typically, then, two consecutive
LDA's are used to read from the 8231.
Data is read by LDA-ABS FB01, LDA-
ABS FB06. The only difference between
this and a status read is that flip-flop B
sets the C/D line low (via 7402-10) in
addition to pulling the CHIP-SELECT
and READ lines low. The double LDA
read cycle required by this circuit is
slightly (20%) less efficient in time than

10 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

using the 6502 ready line in a pause cir­
cuit. Unfortunately, in the Superboard
this line is tied to ground. However,
during long mathematical manipula-

/ tions one is almost always writing data
and commands into the APU, reading
only at the end of a string of operations.
Therefore, this lost time becomes
insignificant.

The 4 MHz clock and the reset
pulses are connected as indicated.

Table 3 gives the APB addresses and
typical commands used to communi­
cate with it. For machines other than
OSI, these addresses may fall in already
assigned areas of the memory map. If so,
the base address FB can easily be

changed by altering the inputs to the
7430 address gate. For example, if the
inverter on line 10 is not used, the high
part of the APB address will be $FF. If
this is done, however, some straightfor­
ward address changes will need to be
made in the software presented here and
in part 2 .

Figure 5 gives a typical layout for the
APB. One first installs the wire-wrap
sockets | assuming the board will be
wire-wrapped, not soldered), and routes
the power lines. Install .01 mfd bypass
capacitors on each chip between the + 5
volt line and ground. After wrapping the
preceding circuits, the board should be
tested using some simple programs
presented below. The basic questions
are, can you get operands in and out of
the unit, and can you command it to
execute operations?

Testing

The first program listed in the appen­
dix asks for an operation code. Among
some useful ones for testing are:
26 = push constant pi onto top of
operand stack , 16 = floating add,
17 = floating subtract, 18= floating
multiply, 19 = floating division, 2 = SIN,
3 = COS, 25 = exchange top operand
with next lower operand. At the first re­
quest for an operation code, enter 26.
The program then reads the stack, and
assuming all is well, the top four bytes
should represent the constant pi in the
APU format. The arithmetic processor
representations of several useful
numbers are (most significant byte
first):

pi = 2,201,15,218
1.0 = 1,128,0,0

-1 .0 = 129,128,0,0
2.0 = 2,128,0,0
0 = 0,0,0,0

Thus the sequence of operations
26.26.3.25.3.17 should result in a zero
on th e top of th e s ta ck . Or
26.26.3.25.3.18 should result in a 1
there. The status register is also read and
displayed.

The second program, when run, asks
for a number between zero and 255. It
writes this onto the top byte of the 8231
stack and then reads it. If what went in
equals what comes back, the program
asks for another number, otherwise an
error message is printed out. With these
two programs enough simple testing can
be done to insure that the circuit is
working correctly. With this hurdle
completed we will be ready to look at

Table 3: Arithmetic Board Addresses and Machine Code Access Statements

Address Function Machine Code

64256 FB00 APU READ STATUS start LDA-ABS FB00
64257 FB01 APU OPERAND READ start LDA-ABS FB01
64262 FB06 APU WRITE OPERAND STA-ABS FB06
64262 FB06 APU READ DATA (status or LDA-ABS FB06

operand, as determined by rt
previous start pulse)

64263 FB07 APU WRITE command to STA-ABS FB07
initiate operation

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 11

the software aspects of the system as
described in part two of this article,
which will be presented next month.

Appendix

Error codes, Parts list, BASIC test
programs, and APU op codes.

INTEL 8231 Error Codes (decimal
values of status register)

128 or
greater busy, operation not completed
64 top-of-stack negative, no error

32 top-of-stack zero, no error
16 divide by zero
8 negative argument of function

not allowed [e.g. square root)

24 argument of function too big
(e.g. Arc Sine, Arc Cosine,
exponential)

4 underflow, number < 2.7 x
I O -20

2 overflow, number > 9.2 x 1018
0 non-negative, non-zero result,

no errors

Parts List

1 Vector board (at least 6" x 6")
1 40-pin wire-wrap socket
2 24-pin sockets
7 14-pin sockets (including 1 for con­
nection to Superboard)
3 16-pin sockets

11 .01 disk capacitors (bypass)
1 80pf capacitor
1 2.2K resistor
2 7404 hex inverters
1 7402 quad NOR gate
1 7410 tri, three input NAND gate
1 7430 8 input NAND gate
1 74LS76 edge trigger flip-flop
1 74LS123 re-triggerable one shot
1 74154 4- to 16-line demultiplexer
2 8T28 tri-state buffers
1 INTELC8231 arithmetic processing
unit

Ribbon cable and connectors (40 and 14
wire)

JUCftO

Figure 5; Layout — Wlrewrap Side of Board

0T28b <

J3
to
Sbd.

7*+123 7̂ 02

7J+30

7410 1

74(fca <

7kLS76 i

Listing 1

1 REM APU TEST 1
2 REM ENTER OPERATION COMMAND NUMBER
3 REM STACK I S PRINTED FROM TOP DOWN.

STACK HOLDS 4 ,4 - B Y T E FLT NMBRS.
9 INPUT "COMMAND";Y: POKE 6 4 2 6 3 , Y
1 0 A = 6 4 2 5 7 : B = 6 4 2 6 2 : PRINT : PRINT
1 1 PRINT "FOR COMMAND CODE=";Y

1 7 X = PEEK (A - 1) : PRINT "STATUS=";
PEEK (B)

2 0 FOR J = 1 TO 1 6 :X = PEEK (A) : PR IN

T PEEK (B)
2 5 NEXT J
2 7 GOTO 9

Listing 2
1 REM APU TEST 2
2 REM ENTER INPUT BYTE BETWEEN ZERO A

ND 2 5 5
3 REM POKE TO APU, THEN READ. IF EQUA
L , OK.

1 0 INPUT "X = ";X
1 2 POKE 6 4 2 6 2 , X: REM

TOP OF APU STACK

1 5 Y = PEEK (6 4 2 5 7) :
START

1 6 Y = PEEK (6 4 2 6 2) :

2 0 I F Y < > X THEN
ROR": PRINT " X = " ;X ;" Y = " ?Y
2 2 I F Y = X THEN PRINT "R/W OK"

2 5 GOTO 1 0

WRITE OPERAND ON

REM OPERAND READ

REM READ DATA

PRINT "APU R/W ER

12 MICRO - The 6502/6809 Journal No. 39 - August 1981

GRAPHICS
FOR OSI COMPUTERS

☆ You Can Produce The Images
Shown Or Yours And Program
Motion With Our 256 By 256 High ^ 1
Resolution Graphics Kit.
Thats 65,536 Individually Controlled
Points On Your TV Screen.
Increase Column/Line Display.
You Can Set Up Your Own Graphic
Pixels Including Keyboard Characters
And Unlimited Figures.

® ☆ This Kit Includes All Parts, Software
And Assembly Instructions Required
To Get Up And Running.
The Included 8k Of 2114 Memory
Is Automatically Available When
Not Using The Graphics.
Boot Up And See 8k More Memory. ^

☆ Adding The Kit Does Not A ffe c t^ ^ B
Your Existing OSI Graphics.
Use Both At The Same Time
Or Separately.

f t Buy The Entire Kit,
Including Memory, For $185.00
Or A Partial Kit For Less If You

a Have Parts. Board And
® Instructions $40.00. Instructions

Include Software.

ME
w 0 1 X
5 10 m

3 H

For This Kit Or A C atalog

Of O ther Kits, S o ftw a r e
And M anuals Call Or Write:

MITTENDORF ENGINEERING
9 0 5 Villa N euva Dr.

Litchfield Park, Az. 8 5 3 4 0
(6 0 2) - 9 3 5 - 9 7 3 4

/AICRO
PET Vet
By Loren Wright

HESLISTER

The most efficient way to enter a
BASIC listing is shown in listing 1.
Multiple statements on a line make ex­
ecution faster, and the lack of spaces
makes the program occupy considerably
less memory. These listings are difficult
to read, let alone understand. Do you
remember which reverse field characters
represent which cursor controls?

Listing 2 is the same set of lines as
output by HESLISTER. Spaces have
been inserted and multiple statements
appear on separate lines. The cursor con­
trol characters appear as two-letter
abbreviations within brackets. Also,
IF...THEN and FOR...NEXT structures
are indented appropriately. Since PET
programs on cassette cannot be read as
data, HESLISTER works only on disk. It
is available for $9.95 from:

Human Engineered Software
3748 Inglewood Blvd., Rm. 11
Los Angeles, California 90066

VIGIL from Abacus Software

Many of us have contemplated
writing interactive games for the PET,
but have never gotten beyond the con­
templation stage. Moving large objects
across the screen with BASIC can be
very slow, and it takes time to write and
debug the required machine language
routines. If you want the use of paddles
or sound, further complication is added.

VIGIL, an acronym for Video Inter­
active Game Interpretative Language, is
a new "language'' offered by Abacus
Software. A few simplifications have
been made. Instead of BASIC variables,
there are 26 registers which can have a
value from 0 to 255. Normal input is
only from 16 keys on the numeric key­
pad. Also, only one statement is allowed
per program line and no spaces may be
embedded in commands. Anything ap­
pearing after a space is treated as a com­
ment and ignored.

The commands, in general, are very
powerful. There are four ''Test and
Skip” commands and three ''Step and
Test’’ commands, which transfer pro­

gram control depending on the value of a
particular register. Control of PET's
double resolution (or quarter-box)
graphics is particularly easy. You can
display a pattern at a specified x-,
y-coordinate and erase it simply by
repeating the display com m and.
Whenever displaying a pattern over­
writes another (as in a rocket hitting a
plane!), the Z-register is affected.
Messages and PET graphic characters are
also displayed by specifying x-,
y-coordinates.

Other features include sound (for a
speaker hooked to CB2 of the parallel
user port), timer control, key-testing,
and variety of data movement and pro­
gram control commands.

The VIGIL interpreter begins at
$033A (826) and runs to $1300 (4864).
Not much room is left for programs in
an 8K machine, but there is still a lot
that can be done. The tape (or disk)
comes with nine sample programs:
BREAKOUT, ANTI, SPACE WAR,
SPACE BATTLE, U.F.O., CONCEN­
TRATION, MAZE, KALEIDOSCOPE,
and FORTUNE-TELLER. All these work
with 8K, and they serve as good ex­
amples of different VIGIL programming
techniques.

I also have a few complaints. Restrict­
ing input to the numeric keypad makes
it awkward to play two-person games.

Sometimes the speed is a little dis­
appointing — not up to pure machine
language speed, but certainly faster than
pure BASIC. Finally, some of the com­
mands are difficult to remember. For ex­
ample, THEN prints a character string at
a specified location and Z and B are "in ­
crement and test” commands. It does
take a little experience to get really com­
fortable with VIGIL, or any new
language. The documentation is very
good, and a separate reference list of
commands is provided.

VIGIL, complete with user's manual
and sample program, is available on disk
or cassette (for BASIC 3.0 only) for $35
from:

Abacus Software
P.O. Box 7211
Grand Rapids, Michigan 49510

October PET Bonus

The October MICRO will have a
special PET bonus section — five or six
articles. Features include "Growing
Knowledge Trees” and "Character Set
Substitution.”

MICRO has Assemblers

MICRO has copies of HESBAL,
MAE, and ASM/TED assemblers. We
can accept articles with source files on
disk or cassette in any of these formats.

Listing 1

165 I FT=ZTHENIFC*=" " THEN IFn$=""THENS=S8:G0T0210
2 1 4 0 FORK=ZTOW: IF G *= L E F T *< L *< K > , D >THEHL=K: T $ = N ID *C L *<K > - 0 + 3 ,U> iK=W
2145 NEXT:RETURN
3080 pr r n t " am m m M ii1' •

Listing 2

165 IF T=Z
THEN IF C$="J"

THEN IF
THEN S=83 s

GOTO 210
2140 FOR K=Z TO W:

IF G=MLEFT*<L*<K>,,P>
THEN L=*K:

T**M ID*<L*<K>,D+3,U>:
k>W

2145 NEXT :
RETURN

3000 PRINT “ CCH3 CCD3 £CQ3 IICQ3 CCO3 CCD3 CCR3 CCR3 CCR3"?

14 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

we carry it all • • • •

A ta ri- S o ftw a re

VisiCalc.. 149
CX4101 Invitation to Programming 1 .. 17
CX4104 Mailing List................................ 17
CX4102 Kingdom..................................... 13
CX4103 Statistics..................................... 17
CX4105 Blackjack.................................... 13
CX4106 Invitation to Programming 2 .. 20
CX4107 Biorhythm.................................... 13
CX4108 Hangman.................................... 13
CX4109 Graph It....................................... 17
CX4111 Space Invader........................... 17
CX4110 Touch Typing............................. 20
CX4115 Mortgage & Loan Analysis__ 13
CX4116 Personal Fitness Program__ 13
CX4117 Invitation to Programming 3 .. 20
CX4118 Conversational French............ 45
CX4119 Conversational German........... 45
CX4120 Conversational Spanish......... 45
CX4121 Energy C za r.............................. 13
CX4125 Conversational Italian 45
CX8108 Stock Charting........................... 20
CXL4001 Educational System M aster.. 21
CXL4002 Basic Computing Language.. 46
CXL4003 Assembler Editor................... 46
CXL4004 Basketball................................ 30
CXL4005 Video E ase l............................ 30
CXL4006 Super Breakout..................... 30
CXL4007 Music Composer.................... 45
CXL4009 Chess....................................... 30
CXL4010 3-D Tic-Tac-Toe..................... 30
CXL4011 Star Raiders............................. 33
CXL4015 TeleLink.................................... 20

Talk & Teach Courseware:
CX6001 to CX601 7 23

everything for Commodore
and Atari

Atari® Peripherals:

400 16K..................................... $349
410 Recorder........................... 59
810 D isk.................................... 469
815 D isk.................................... 1199
822 Printer................................ 359
825 Printer................................ 629
830 Modem.............................. 159
850 Interface Module............ 139

Atari® Accessories

CX853 16K R A M 89
CX70 Light Pen..................................... 64
CX30 Paddle ... 18
CX40 Joystick....................................... 18
CX86 Printer Cable.............................. 42
C 0 16345 822 Thermal

Printer Paper.................................. 5
CA016087 825 80-col.

Printer Ribbon
(3/box).. 17

Microtek 16K RAM................................ 79
Microtek 32K RAM................................ 179

VIC-20..$ 279
4032 N .. 1020
8 0 3 2 1175
CBM 4022 Printer............................. -630
CBM 4040 Drive.............................. 1020
CBM 8050 Drive.............................. 1420
CBM C2N Drive................................ 87
PET-IEEE Cable................................ 37
IEEE-IEEE Cable.............................. 46

A
ATARI 800
with 32K RAM

Disks

Maxell Disks.............................. 10 for $36
Syncom Disks................................10 for 29
Atari Disks.................................... 5 for 22

only $759
Printers
NEC 5530... $2495
Diablo 6 3 0 ... 2195
Trendcom 100 299
Starwriter.. 1495
Trendcom 200 489

Paper Tiger 4 45G 769
Paper Tiger 4 6 0 G 1219
Epson MX-80

MX-80FT > Call for new prices!
MX-70)

Tally 8024 1699

Software
EBS Accounts Receivable
Inventory System....................................$595
OZZ Information System.................... 329
BPI General Ledger............................. 329
Tax Package.,..................... 399
Dow Jones Portfolio Management .. 129
Pascal.. 239
WordPro 3 (40 col.)............................. 186
WordPro 4 (80 col.)............................. 279
WordPro 4 Plus (80 col.).................... 339
Wordcraft 80 ... 319

Please Call Between 11AM & 6 PM
(Eastern Standard Time)

(800) 233-8950
No Risk-
No Deposit On
Phone Orders -
COD or
Credit Card - Shipped Same Day You Call*
Prepaid Orders Receive Free Shipping
* on all in stock units

Computer Mail Order 501 E. Third St., Williamsport, PA 17701 (717) 323-7921

No. 39 - August 1981 MICRO - The 6502/6809 Journal 15

It’s Time to Stop Dreaming
P art 3

Robert M. Tripp
Editor/Publisher
MICRO

Part 1 of this series (MICRO 37:9) intro­
duced the Motorola 6809 as a candidate
for the 6502 "Dream Machine" and
discussed its basic architecture and
fundamental characteristics. Part 2
(MICRO 38:27) presented the details on
several major features of the 6809, par­
ticularly the support for writing
position-independent code (PIC) and the
extensive stack operations. Part 3
describes the instruction set in detail
using terms familiar to MICRO readers,
by com paring it instru ction-by -
instruction to our beloved 6502.

Table 1 presents the entire 6809 in­
struction set, with the exception of the
Branches, which are presented in table
2. The table lists the instructions by
both the 6502 and 6809. A brief study of
the itable will show how similar the in­
struction sets are. Most of the instruc­
tions available on the 6502 are also
available on the 6809. The standard
mnemonics are even identical for the
most part. If a particular instruction is
not available on one or the other pro­
cessor, this has been indicated in the
table by

Notes and comments about the in­
struction set from the 6502 point of
view:

1. The Carry Flag is not treated iden­
tically on the two processors. On
the 6502, the Carry Flag is Cleared
to indicate a "borrow" and Set to
indicate "no borrow.” (Remember
the SEC before an SBC?) On the
6809, the Carry Flag is Set to in­
dicate a "borrow" and Cleared to
indicate "no borrow." While this
“reversal" may cause a little dif­
ficulty at first, it does make sense if

you think about it. You can start all
arithmetic operations with a Clear
Carry (CLC) instruction.

Since the sense of the Carry Flag
is reversed on the "borrow/no bor­
row ," a Compare instruction,
followed by a BCC or BCS, will
function differently on the 6502 and
6809. This should not cause any
trouble since the 6809 offers addi­
tional Branches including Branch
on Less (BLS), Branch on Low
(BLO), which is actually identical
to the Branch on Carry Set (BCS),
and so forth. Since the BCC and
BCS are normally used as "Branch
on Less" types of operations after a
Compare on the 6502, the inclusion
of additional branches for these pur­
poses on the 6809 is helpful.

2. The programmed setting and clear­
ing of the Condition Codes or Flags
is handled quite differently on the
6809, but can be treated as almost
identical forms. The 6502 has
separate instructions for each Clear
and Set. The 6809 uses a single in­
struction for Clearing any number
of Flags and another single instruc­
tion for Setting any number of
Flags. Flags may be Cleared by the
ANDCC instruction which is two
bytes: the opcode, and the mask
which determines which Flags will
not be cleared. Flags may be Set by
the ORCC instruction which is also
two bytes: the opcode, and the
mask which determines which
Flags will be set.

An SEI on the 6502 would be
equivalent to ORCC #$10 on the
6809; a CLI would be ANDCC
#$EF. Since the 6800 has a set of in­
dividual instructions for each Flag
just like the 6502, many 6809
assem b lers w ill a ccep t th e
6800/6502 form and assemble it for
the 6809. For example, many 6809
assemblers will accept SEI as a
mnemonic and generate the object
code for an ORCC #$10.

3. The ASL and LSL instructions are
actually one and the same on the
6809. The 6809 has simply provid­
ed two sets of mnemonics. The ASR
and LSR, how ever, are not
equivalent. The ASR shifts the most
significant bit back into the most
sig n ifican t p osition , thereby
extending the sign for the original
byte. The LSR shifts a zero into the
most significant bit.

4. The EXG and TFR instructions may
be used between any two registers
of the same size, (that is, between
any two 8-bit registers or any 16-bit
registers), but may not be used be­
tween an 8-bit and a 16-bit.
Therefore, the following instruc­
tions which would be valid on the
6502 would not be valid on the
6809:

TAX, TXA, TAY and TYA

5. The Push/Pull Stack operations on
the 6502 require only one byte each.
The Push/Pull Stack operations on
the 6809 require two bytes, but can
accomplish a lot more. On a single
PSH, up to eight registers may be
pushed. Which registers are to be
pushed is specified in the second
byte of the instruction. There is a
fixed order in which registers are
pushed onto the stack, and all of the
registers may be pushed onto the
stack, not just the A reg and Condi­
tion Codes as on the 6502. Similar­
ly, a single PUL can pull one to
eight registers. The order is: CC
(Condition Codes] A B DP (Direct
Page) X Y U or S PC.

6 . There are two independent Stacks
on the 6809. The " S " . Stack is
similar to the 6502 stack, except
that it has a 16-bit pointer and can
be anywhere in memory. The "U "
(User) Stack has all of the same
operations as the " S " Stack, but is
not used for hardware interrupt and
subroutine processing.

16 MICRO - The 6502/6809 Journal No. 39 - August 1981

Table 1 :6502/6809 Instruction Comparison Table

6502 6809 Notes and Details
— ABX Add B Reg to X Reg
ADC ADCA ADCB Add with Carry Bit
... ADDA ADDB ADDD Add without.Carry Bit
AND ANDA ANDB Logical AND
ASL ASLA ASLA ASLB ASL Arithmetic Shift Left
... ASRA ASRB ASR Arithmetic Shift Right
BRK SWI SWI2 SWI3 6809 has three Software Interrupts
BIT BITA BITB Binary Bit Test
— CLRA CLRB CLR Clear: Set to Zero
CLC, CLI, CLV ANDCC Clear Condition Codes by ANDing
CMP CMPA CMPB CMPD Compare Reg to Memory
CPX CMPX Compare Index Reg to Memory
CPY CMPY Compare Index Reg to Memory
— CMPS CMPU Compare Stack Reg to Memory
— COMA COMB COM One's Complement
... DAA Decimal Adjust replaces Decimal Mode
DEC DECA DECB DEC Decrement
DEX (Part of Auto Decrement Index Mode)
DEY (Part of Auto Decrement Index Mode)
EOR EORA EORB Logical Exclusive OR
... EXG R1,R2 Exchange Specified Reg Contents
INC INCA INCB INC Increment
INX (Part of Auto Increment Index Mode)
INY (Part of Auto Increment Index Mode)
JMP JMP Jump to Address
JSR JSR Jump to Subroutine
LDA LDA LDB LDD Load Reg
LDX LDX Load Index Reg
LDY LDY Load Index Reg
— LDS LDU Load Stack Reg
— LEAX LEAY LEAS Load Effective Address into Index Reg
— LSLA LSLB LSL Logical Shift Left
LSR LSRA LSRA LSRB LSR Logical Shift Right
... MUL Unsigned multiply: A*B = D
... NEGA NEGB NEG Two's Complement
NOP NOP No Operation
ORA ORA ORB Logical OR
PHA/PHP PSHS PSHU Push Specified Regs on Specified Stack
PLA,PLP PULS PULU Pull Specified Regs from Specified Stack
ROL ROLA ROLA ROLB ROL Rotate Left
ROR RORA RORA RORB ROR Rotate Right
RTI RTI Return from Interrupt
RTS RTS Return from Subroutine
SBC SBCA SBCB Subtract with Borrow
SEC,SED,SEI ORCC Set Condition Codes
-- SEX Sign Extend B Reg into

A Reg
STA STA STB STD Store Reg into Memory
STX STX Store Index Reg into Memory
STY STY Store Index Reg into Memory
— STS STU Store Stack Reg into Memory
— SUBA SUBB SUBD Subtract without Borrow
TAX, TAY, TYA, TXA — Replaced by Transfer Instruction TFR
TSX, TXS ... Use LDS/LDU, STS/STU, EXG or TFR
— TSTA TSTB TST Set Sign and Zero Condition Codes

T F R R1,R2 Transfer Reg R1 to Reg R2

■X

This page may be copied without permission from MICRO.

No. 39 -- August 1981 MICRO - The 6502/6809 Journal 17

Table 2: Branch Instruction Comparison Table
6502 6809 Branch Operation

Simple Branches
BCC BCC LBCC Branch on Carry Clear
BCS BCS LBCS Branch on Carry Set
BEQ BEQ LBEQ Branch on Equal Zero
BNE BNE LBNE Branch on Not Equal Zero
BMI BMI LBMI Branch on Minus
BPL BPL LBPL Branch on Plus
BVC BVC LBVC Branch on Overflow Clear
BVS BVS LBVS Branch on Overflow Set

Signed Branches
— BGT LBGT Branch if Greater
.... BGE LBGE Branch if Greater or Equal
.... BLE LBLE Branch if Less or Equal
.... BLT LBLT Branch if Less

Unsigned Branches
.... BHI LBHI Branch if Higher
.... BHS LBHS Branch if Higher or Same
.... BLS LBLS Branch if Lower or Same
.... BLO LBLO Branch if Lower

Other Branches
— BSR LBSR Branch to Subroutine
.... BRA LBRA Branch Always
.... BRN LBRN Branch Never !!!

Notes: The 6809 has two forms of each.Branch. The "short form” is identical
to that on the 6502, using a one-byte offset which permits it to branch only to
locations within plus or minus 128 decimal bytes from the branch instruction.
The "long form,” preceded by an L in the table, uses a two-byte offset which
permits it to branch directly to any location in a 64K memory.

CBM/PET? SEE SKYLES
l u

8S

CBM/PET?
“ Should we call it Command-O
or Command-0-Pro?”
That’s a problem because this popular ROM is
called the Command-O-Pro in Europe. (Maybe
Command-O smacks too much o f the military.)

But whatever you call it, this 4K byte ROM will provide your CBM BASIC 4.0 (4016, I
4032) and 8032 computers with 20 additional commands including 10 Toolkit program
editing and debugging commands and 10 additional commands for screening, formatting
and disc file manipulating. (And our manual writer dug up 39 additional commands in the
course of doing a 78-page manual!)

The Command-O extends Commodore’s 8032 advanced screen editing features to the ulti­
mate. You can now SCROLL up and down, insert or delete entire lines, delete the char­
acters to the left or right of the cursor, select TEXT or GRAPHICS modes or ring the
8032 bell. You can even redefine the window to adjust it by size and position on your
screen. And you can define any key to equal a sequence of up to 90 key strokes.

The Command-0 chip resides in hexadecimal address $9000, the rightmost empty socket
in 4016 and 4032 or the rearmost in 8032. If there is a space conflict, we do have Socket- .
2-'ME available at a very special price.

Skyles guarantees your satisfaction: if you are not absolutely happy with your new I
Command-O, return it to us within ten days for an immediate, full refund. I

Command-O from Skyles blectric Works.. $75.00

Complete with Socket-2-Me... 95.00

Shipping and Handling...................................(USA/Canada) $2.50 (Europe/Asia) $10.00
California residents must add 6%/6'A % sales tax, as required.

Skyles Electric Works Visa/Mastercard orders: call tollfreel
231E South Whisman Road (800) 227-9998 (except California). 1
Mountain View, California 94041 California orders: please call (415)
(415) 965-1735 965-1735.

/IAI90 S31AMS 31S 6l3d/IAiaO "

7. The Clear instruction is simply a
quicker way to load a zero into the
A or B registers or into a memory
location.

8 . There are two complement instruc­
tions. COM performs a one's com­
plement on the A or B register or
memory. This simply complements
each bit of the specified location.
NEG performs a two's complement
which is equivalent to a COM plus
one. This makes the negative value
of the original number.

9. On the 6809 you can simply-incre­
ment or decrement the A and B
registers with the INC and DEC
commands. The 6502 requires a
CLC, ADCIM #$01 for an INC on A
or an SEC, SBCIM #$01 for a DEC
on A. There is no specific INC or
DEC for the X or Y registers, but
this is normally handled in the
auto-increment or auto-decrement
indexed instruction modes.

10. The LEA (Load Effective Address) is
a powerful addition to the 6809
which has no counterpart in the
6502. It is one of the features that
really makes the 6809 a "dream
machine,” but it will take some
getting used to.

11. The inclusion of three separate soft­
ware interrupts, in place of the
single BRK on the 6502 should not
upset anyone. It should make error
trapping, debugging, and other
interrupt-driven operations, con­
siderably simpler to write and use.

12. The 6502 requires that a two-byte
address be provided in the form low
byte/high byte. The 6809 uses the
more natural form of high byte/low
byte. At the Assembler level this
does not make any difference, but at
the Object level it does. All two-
byte addresses on the 6809, includ­
ing indirect addressing via tables,
interrupt vectors, and so forth are
high/low. Compare:

8D3412 STA $1234 on the 6502
B7 12 34 STA $1234 on the 6809

The two-byte address on the 6502
in object form is 34 12; on the 6809
it is 12 34.

This list may make it seem that
there are a great number of differences
between the 6502 and the 6809. The
significant differences are actually quite
minor, and in many cases the dif­
ferences are in the direction of improved
operations on the 6809. m ito o

18 MICRO - The 6502/6809 Journal No. 39 - August 1981

Color computer owners.

Yes, th at’s right - for as little as
$298.00 you can add 32K of dynamic
RAM, and a disk interface, to your
TR S-80 Color Computer! If you just
want the extra memory i t ’s only
$199.00, and you can add the disk
interface later for $99.00.

Ju st plug the Color Computer In ­
terface (CCI), from Exatron, into
your expansion socket and “ Hey
Presto!” - an extra 32K of memory. No
m odifications are needed to your
computer, so you don’t void your R a ­
dio Shack warranty, and Exatron give
both a 30 day money-back guarantee
and full 1 year repair warranty on
their interface.

T h e CCI a lso c o n ta in s a 2K
m achine-language m on itor, w ith
which you can examine (and change)
memory, set break-points, set memo­
ry to a constant and block-m ove
memory.

So what about the CCI Disk Cardl
Well as we said it’s only an extra
$99.00, but you’ll probably want
E x atro n ’s CCDOS which is only
$29.95 - unless you want to write your
own operating system. The CCI Disk

Card uses normal T R S-80 Model I
type disk drives, and CCDOS will
even load Model IT R S D O S disks into
your color computer - so you can
adapt existing T R S-80 BA SIC pro­
grams.

As.a further plus, with the optional
ROM Backup adaptor, you can dump
game cartridges to cassette or disk.
Once the ROM cartridge is on cas­
sette, or disk, you can reload, examine
and modify the software. The ROM
Backup adaptor is only $19.95.

For more information, or to place an
order, phone Exatron on their Hot
Line 800-538 8559 (inside California
408-737 7111), or clip the coupon.

excellence in electronics

exatron

DEALER ENQUIRIES INVITED

Exatron,
181 Commercial Street,
Sunnyvale, CA 94086

□ Please send a 32K Color Computer
Interface for $199.00

□ Please send a CCI Disk Card for $99.00
□ Please include CCDOS and manual

for $29.95
□ Also include a ROM Backup adaptor

for $19.95
Please add $5.00 for shipping to all orders,
and 6 percent sales tax in California.
Name...
Address...-
City.. .
State.......Zip...
Charge my:
□ MasterCard Interbank Code........ .
□ Visa Expiration D ate...................

Card...
□ Check enclosed for.....................
□ Ship COD ($2.00 extra)

Signature

*32K RA M plu s D isk I n te r fa c e T R S-H 0 is a tra d e m a rk o f T a n d y

Improved nth Precision

This article discusses code
optimization for small systems,
using Golla’s add/subtract
routines (MICRO 27:27) as an
example.

Glenn R. Sogge
Fantasy Research & Development
P.O. Box 203
Evanston, Illinois 60204

where and when it is needed rather than
having to remember which routines
need which bytes changed. As the use of
computers spreads through the public, I
think it is the responsibility of program­
mers to make the use of their codes as
easy as possible for the neophytes. Hand
relocation of short routines is quite easy
for someone with a little bit of program­
ming experience but it is still not a con­
ceptually trivial task.

Playing with the Stack

A big advantage of a hardware stack
is the "free” temporary storage it pro­
vides. In the 6502, this chunk ol
memory is hardware address dedicated
and rarely gets used for anything else.
With a proper understanding of how tc
access this area, another page of tem­
porary scratchpad RAM is available to
the user. This can be important in small
systems with small memories or in big
systems whose software grabs all the
page zero locations it can find.

Another advantage of accessing the
stack memory is that the addresses neec
not be hard-coded in the software. It is
possible to write everything relative tc
the current stack pointer and the hard­
ware will do the translation into the pro­
per bits on the address bus. This creates
a very small virtually-mapped memory.
Location $4 relative to the stack pointei
might be a different physical address
every time the instruction is executed
but the logical space is always the same.

In my recoding of the math routines
I used this technique for only one of th<
locations — the flags to be passed bad
to the calling routine. This ensures that
that data will not be accidentally clob­
bered by the stack as might happen witt
Golla's use of locations $100 and $101;
it also avoids the problems of selecting
another address (page zero or elsewhere'
that would conflict with locations usee
by other systems’ hardware and software

There is, unfortunately, no way tc
locate the pointers in equally flexible
locations; if these locations conflicl
with others in the user's system, the
code will have to be changed. Unlike the
more advanced chip designs that make
all kinds of relocation easy (data and
programs), such as the 6809, we have tc
sacrifice some flexibility for the speed
and size savings possible with the
6502's instruction set.

This article began as a couple of short
notes on ways to optimize the coding of
machine language programs for the
6502. The article and program in the
August, 1980 issue of MICRO (27:27) by
Lawrence R. Golla presented two
routines for multiple precision adding
and subtracting. These routines were
transparent as far as register contents
were concerned and returned the correct
information in the flags.

As I began the actual recoding of the
routines to satisfy a couple of my pet op­
timizing prejudices, I discovered that
the zero checking routine seemed overly
complicated and slow. The resulting
"optimized code” is a complete rework­
ing of the status information code, with
a few other goodies thrown in, that in­
crease the execution speed and lower the
memory requirements.

Relocation

The first step was to make the
routines position-independent. When­
ever I find a short, versatile routine, I try
to adapt it for easy use in most situa­
tions without the time-consuming pro­
cess of individual relocations. I believe
tha t any short routine that can easily be
coded with branch instructions (even if
a two- or three-stage branch is required)
is preferable to one that contains ab­
solute jumps. The only exception to this
is in code that is critically time-
dependent; even then, alternate codings
can often be used. I think it is preferable
to recode a routine once and just load it

A collection of routines coded this
way can make up a very useful library
that can be customized without th e ' 'big
sy stem " overhead of relocatable
assemblers and linking loaders. Only as
many of the system utilites as are need­
ed get loaded into the machine.

Sometimes, the best way to improve
a routine is not through the peephole op­
timization of small bits of code but by
using a different algorithm. This kind of
large-scale optimization is what really
pays off in the long run. In these
routines, I checked for a zero result in a
very straight-forward and fast manner.
The code begins (after the math is done)
at M OUT by saving the C and V flags
and assuming the result is probably not
zero and that it is not negative. The code
then starts checking the result bytes
from lowest to highest. As soon as a
non-zero byte appears, it exits this
check code and leaves the Z flag at 0
(i.e., it found something to prove its
assumption). Only as many bytes are
checked as are necessary to prove this
assumption; this might range from 1 to
128 but it only checks all 128 junlike
Golla's routine) if it has to. If the result
does turn out to be zero, only then does
it go through the Z flag machinations.

A similar logic is used for the N flag.
It is assumed to be positive and changed
only if this assumption is not true. A
peephole technique was used to save the
C and V flags and clear the N and Z flags
with one instruction — the AND #$7D
just after MOUT followed by the saving
of this status on the stack (actually IN
the stack).

20 MICRO - The 6502/6809 Journal No. 39 - August 1981

When data is pushed on the 6502's
stack, the stack pointer determines
where the storage address is on the page
(most systems have the stack at
$100-$IFF, although it is possible to put
the stack at $0-FF with some 6502
designs). After storing the byte, the
stack pointer is decremented (the stack
grows downwardl and points to the next
available location. By transferring the
stack pointer to the X-register (which
we’ve already saved or don't care about),
we can absolute index into this page as
normal memory.

Examples:

next free
top of stack
second on stack
third on stack
fourth on stack

One problem with this technique is
the lack of wrap around. Unlike the page
zero,X mode, the resulting addresses do
not wraparound to the beginning of the
page. If the base address you are using
plus the stack pointer offset sums to
more than $1FF, you'll end up indexing
into the $200-$2FF page. This is not
likely to happen if the stack pointer gets
initialized to the top of the page — like
$FF — and you know the stack won't
grow all the way down and wrap around.
If it does, however, you may end up
with a situation where your base address
is $110 (from passing lots of parameters
before a subroutine call] and the stack
pointer is $F8 . The resulting address is
$208, not $108. As I said, this is not
likely to happen unless the stack pointer
is never initialized to a known value.
Some systems may not initialize the
pointer because it is restricted by hard­
ware to the $100-$ IFF range; the
"unknown stack" or “no RAM stack"
conditions of other processors cannot
happen and the initialization step might
be skipped. User programs should either
initialize the stack or be sure of its
ranges before using the technique
outlined here.

The actual use of this technique in
math routines is straightforward. Space
is allocated for the returning flags by
saving the caller's flags upon entry. The
byte at this “semi-absolute address" is
then modified according to the results of
the math routines and passed back to
the caller by popping them off the stack
at the end of the code.

Notice that no flags other than the
pnes used by the routine are altered

Jiefore they are passed back. The inter­
rupt mask, the break flag, and the
decimal flag in effect at entry time will
be restored upon exit. Thus, this binary

$ 100,X
$101,X
$102,X
$103,X
$104,X

Listing 1

*
* LAURENCE R. GOLLA'S ORIGINAL
* NTH PRECISION ROUTINES AS
* PUBLISHED IN MICRO 8 /8 0
* PAGES 27-29
4>
* *
*

SYM
PTR1 EQU *10
PTR2 EQU *12
PTR3 EQU *14
PREC EQU *16
AEND EQU PTR1
AGAND EQU PTR2

0RG *4000
OBJ *4000

*
4000: 48 ADD PHA
4001 * 98 TYA
4002 ♦ 48 PHA
4003 8A TXA
4004 48 PHA
4005 A4 lo LDY PREC
4007 18 CLC
4003 B8 CLD
400? B0 CLV
400A i a 10 L00P1 LDA (AEND)fY
400C 71 12 ADC < AGAND >,Y
400E 91 14 STA < PTR3 >*Y
4010 88 DEY
4011 10 F7 BPL LOOP1
4013 : 30 13 BMI OUT

*
4015 48 SUB PHA
4016 98 TYA
4017 48 PHA
4018 8A TXA
4019 48 PHA
401A A4 16 LDY PREC
401C Do CLD
401D 38 SEC
401E B8 CLV
401F B1 10 L00P3 LDA (AEND >*Y
4021 F I 12 SBC (AGAND >.Y
4023 91 14 STA (PTR3 >»Y
4025 88 DEY
4026 10 F7

£
BPL L00P3

4023 A4 16 OUT LDY PREC
402A A9 00 LDA **0 0
402C 51 14 L00P2 E0R <PTR3)»Y
402E 08 PHP
402F 30 07 BMI NZER
4031 88 L00P4 DEY
4032 30 0B BMI 0UT1
4034 28 PLP
4035 4C 2C 40 JMP L00P2
4038 28 NZER PLP
403? 0? 01 ORA **0 1 SET Z=0
403B 08 PHP
403C 4C 31 40 JMP L00P4

*
403F 68 0UT1 PLA
4040 29 7F AND **7F
4042 8D 00 01 STA *100
4045 CS INY
4046 B1 14 LDA (PTR3)rY
4048 49 00 EOR **0 0 ADJUST N-FLAG
404A 08 PHP
404B 68 PLA
404C 29 80 AND •*8 0
404E 0D 00 01 ORA *100 ADD TO FLAGS
4051 80 00 01 STA *100
4054 68 PLA
4055 AA TAX
4056 68 PLA
4057 A8 TAY
4058 68 PLA
4059 80 01 01 RESET STA *101
405C A0 00 01 LDA *100 GET STATUS
405F 48 PHA
4060 A0 01 01 LDA *101
4063 28 PLP
1064 60 RTS

No. 39 - August 1981 MICRO - The 6502/6809 Journal 21

Listing 2
* *
*
* NTH PRECISION ROUTINES AS
* MODIFIED BY GLENN ft. SOGGE
* FANTASY RESEARCH & DEVELOPMENT
* P.O . BOX 203
* EVANSTONi IL £0204
*
* AUGUST 7 1 1980
*

*
STACK EQU (100
STKL0C
*

EQU STACK+4
♦

ORG *4100

*
OBJ *4100

4 10 0 : 18
*
MADD CLC

4 1 0 1 : B0 38 BCS *+*3A HIDES 'SEC' (* 3 8)
MSUB
*

EQU * -1

4103! 08
*

PHP SAVE ALL THE REGISTERS
4104! 48 PHA INCLUDING ROOM FOR THE STATUS
4105! 8A TXA
4106! 48 PHA
4107! 98 TYA
4108! 48 PHA
4109! D8 CLD
410A! B8 CLV
41o b : A4 16 LDY PREC
4 100 : B0 0B

*
BCS MSUB1 C STILL SET FROM ENTRY

410F: B1 10
*
MADD1 LDA < PTR1)r Y

4111! 71 12 ADC (PTR2 >fY
4 i i3 : 91 14 STA < PTR3)fY
4 i i5 : 88 DEY
4116: 10 F7 BPL MADD1
4118: 30 09 BMI MOUT

41 i a : B1 10
ft
MSUfil LDA (PTR1).Y

4 i i c : F I 12 SBC (PTR2 >*Y
4 U e : 91 14 STA < PTR3)*Y
4120! 88 DEY
4 1 2 1 : 10 F7 BPL MSUB1

4123: 08
£
MOUT PHP

4124: 68 PLA RESET N & Z <=0> BUT
4125: 29 7D AND **7D SAVE C & V
4127: BA TSX GET POINTER TO STASH
4128: 9D 04 01 STA STKLOCtX STORE IN ORIGINAL P SAVED
412B: A4 16 LDY PREC

4120: B1 14
&
ZCHK LDA (PTR3J.Y

412F: DO 0B BNE NCHK LEAVE AS SOON AS FIND <>0
4131! 88 DEY
4132: 10 F9 BPL ZCHK KEEP LOOKING
4134: BB 04 01 ZFLG LDA STKLOCrX X STILL SET
4137: 09 02 ORA **0 2 MAKE Z=1
4139! 9D 04 01

*
STA STKLOCrX

413c: A0 00
*
NCHK LDY • *00

413E: B1 14 LDA (PTR3)fY
4140! 10 08 BPL EXIT LEAVE N=0
4142! BD 04 01 NFLG LDA STKLOCiX
4145! 09 80 ORA **8 0
4147: 9D 04 01

+
STA STKLOC.X MAKE N=1

414A: 68 EXIT PLA
414B: A8 TAY
414C: 68 PLA
414D: AA TAX
414E: 68 PLA
414F: 28 PLP PULL FLAGS AS MODIFIED
4150: 60 RTS AND EXEUNT

*
ORG *4200
OBJ *4200

t

math routine could be called by a
decimal math program and not interfere
with the main program. [Interpreting
the results is another matter.)

(A modification of these routines
would be to NOP the CLD instruction
to allow the code to work in whichever

base was in effect for the calling program
or to change the CLD to a SED for
decimal operands and results. The N
and V flags will not be correct if decimal
is the base in effect when the code runs,
but the answers and the C and Z flags
will still be right.)

Code Sharing and Duplication

The original routines duplicate
quite a bit of set-up code at their begir
nings (saving registers, clearing flags
getting the precision, etc.). In fact, th
only differences are in the setting of th
carry flag. By setting the carry flag apprc
priately as the first action upon entry, th
duplicate code can be shared and thei
branched out of on the basis of the carr
— if it's clear, add; it it's set, subtract

The very first bytes are a trick’
technique I picked up from some of th<
Apple peripheral card firmware. Entry a
the first byte clears the carry and thei
encounters a branch instruction it wil
never take (BCS — branch if set) an<
falls through into the main code. Th<
second byte of the branch instructioi
contains the value of the SEC opcod<
($38 — the value in the source listing ii
necessary to get my assembler to cal
culate the correct value). Entering a-
this third byte will set the carry anc
then fall into the common code. The en
try points are Origin -+ $00 for adding
and Origin + $02 for subtracting. (I fine
close entry points easier to remembei
than ones spaced farther apart.)

This bit of trickery saves one byte oi
code that could be crucial in a smal]
ROM driver by compressing a sequence
like

ENTRY1 CLC
BCC MAIN

ENTRY2 SEC
MAIN

of 4 bytes into 3 bytes. In addition,
assuming the flag doesn't get modified
by the main code, selective initializa­
tion or function selection is possible fur­
ther down the road.

What We Have Gained

All of this is only of theoretical in­
terest if there isn't some practical result.
The clearest gain is a reduction of
memory size from 101 bytes to 81 bytes
without any loss of function and an in­
crease in portability. There is also an
improvement in speed but this isn’t
quite as clear-cut.

The test routines included in the
listings were some of the code and con­
ditions I used for quantifying the results.
In the examples given, one of the worst
case situations is executed. Two
128-byte zeros are added together,
checked for a zero result, and the flags
appropriately set. This is done 256 times
before hitting the BRK's. With Golla's
code, each of the 256 adds takes about

22 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

TAKE
Unique Data Systems has.
We’ve taken Rockwell’s AIM
65 Microcomputer, packaged
it in a professional enclosure
and turned it into a versatile,
higher capacity microcomputer
system . Complete with a
memory-l/O board, modem
board or wire wrap proto­
typing board, power supply,
cables and connectors. It
makes the AIM 65 a joy to
work with, and there's even
space inside for your own
special circuitry. We’ll sell
you the whole package or just
the bits and pieces you need
for your application. We’re
AIM 65 specialists. We’ re

Unique Data Systems.

i n

Unique Data Systems
15041 Moran Street

Westminster, CA 92603

(714)895-3455

Listing 3

*
* TESTING ROUTINES
*

*
♦200: A2 43 SETPTRS LDX **4 3
4202! 86 11 STX PTR1+1
4204! E8 INX
4205! 86 13 STX PTR2+1
4207! E8 INX
4208! 36 15 STX PTR3+1
420A! A0 00 LDY **0 0
420C! 84 10 STY PTR1
420E! 84 12 STY PTR2
4210! 84 14 STY PTR3
4212! A? 7F LDA **7F
4214! 35 16 STA PREC
4216! A9 00 LDA **0 0
4218! AO 00 LDY **0 0
421A! 91 10 CLRL00P STA < PTR1 >»Y
421C: 91 12 STA < PTR2)>Y
421 e : 91 14 STA < PTR3) f Y
4220: C8 INY
4221! 10 F7 BPL CLRL00P
4223! 60 RTS

4224! 20 00 42 ADDTST JSR SETPTRS
42271 A2 00 LDX **0 0
4229! 20 00 40 ADLP1 JSR ADD
422C! CA DEX
422D! DO FA BNE ADLP1
422F! 00 BRK

4230: 20 00 42
£
ADDT2 JSR SETPTRS

4233: A2 00 LDX **0 0
4235: 20 00 41 ADLP2 JSR MADD
4238: CA DEX
423?: DO FA BNE ADLP2
423B* 00

*
BRK

40 BYTES GENERATED THIS ASSEMBLY

MAXIMUM PRECISION

NULL EVERYTHING

ADD 0 TO ITSELF 256 TIMES

SAME AS ABOVE

.0059 seconds (5.9 milliseconds); with
my code, each takes about .0049
seconds (4.9 milliseconds). (The multi­
ple execution was to allow stopwatch
timing to at least be in the ball park.) For
these cases, all of the bytes of the result
had to be examined before the zero flag
could be properly set.

As a further test of the differences
between the routines, I set them up to
add zero and 1 (both 128-byte precision).
Here the differences were much more
substantial — Golla's code still took
around 6 milliseconds per result while
mine ran in about 3.3 milliseconds.
This shows the effect of changing the
algorithm because the code is almost
identical except for checking the result
for zero.

The rewritten code runs at times
that are proportional to both the amount
of precision and the result but the
original code runs at speeds only propor­
tional to the precision.

When and What to Optimize

As I said at the beginning, this article
started out as a few thoughts about opti­
mizing; obviously it's expanded con­
siderably. Golla's routines seemed like a
good place to illustrate some of the
techniques and results of optimization.

Not all code can be optimized in these
ways and some shouldn't be. Saving
three bytes and 15 microseconds is not
important if you have 4K of extra RAM
and the routine is dependent on user
reaction time — the sweat just isn’t
worth it.

These math routines were good can­
didates though because the optimization
worked on the loops where most of the
execution time is spent. With the size of
the code, tools should only be big
enough to do their job (if they're too big,
you may have to exclude another useful
tool from your program). Tools like
these routines should be optimized
because they are likely to be used more
often than their size, would indicate.
Number-crunching is slow enough as it
is; the design of the code shouldn't im­
pede it even more.

Some analysts estimate that 80% of
the execution time is spent in 20% of
the code. That 20% is where the optimi­
zation should be done.

Glenn R. Sogge is a 30 year old former
composer with a degree in Art and 7 Vi
years of retail business experience. He has
become fascinated and infatuated with
those electronic crossword puzzles that are
called computers.______________________

JMCftO

No. 39 - August 1981 MICRO - The 6502/6809 Journal 23

^Y vcrt's W h e r e in ^

apple?
By William F. Luebbert

Adjunct Professor of Engineering, Dartmouth College

The MOST DETAILED description to date of Apple II Firmware and Hardware.
• This Atlas and Gazetteer of PEEKs, POKE*, and CALL* lists in tabular form over 2000 memory

locations.
• Information is presented numerically in the Atlas and alphabetically in the Gazetteer.
• The names and locations of various Monitor, DOS, In teg er BASIC, and Applesoft routines

are listed, and information is provided on their use.
• The easy to use format includes:

The address in hexadecimal (useful for assembly programming):.............................. *F C 58
The address in signed decimal (useful for BASIC programming):.............................. { - 9 3 6)
The common name of the address or routine:......*.. C HOME 3
Information on the use and type of routine:..\S E \
A description of the routine:........................... CLEAR SCROLL WINDOW TO BLANKS.

SET CURSOR TO TOP LEFT CORNER
Related register information: .. <A - Y-REGS ALTERED}

This reference tool o ffers Inform ation every serious Apple user needs. BASIC and
assem bly language users a lik e w ill find the book helpful In understanding the Apple.

Approximately 128 pages, 8-V2 x inches, cardstock cover, Wire-0 binding. Publication: August 1981
$ 1 4 .9 5 *

24-H our T o ll-free Service VISA and M astercard Accepted

8 0 0 - 2 2 7 - 1 6 1 7 E x t . 5 6 4

In California call 800-772-3545 Ext. 564

/AlCftO
34 Chelmsford Street P.O. Box 6502 Chelmsford, MA 0I824

After Sept. 30,1981, add $2.00 for surface shipping. Massachusetts residents add 5% sales tax.

AN ATLAS FOR
THE APPLE COMPUTER

Disassembling to Memory
on AIM 65

This program lets you direct
disassembled code to the AIM
Editor’s Text buffer for clean-up
so that it can serve as input to
the AIM Assembler.

Larry P. Gonzalez
Dept, of Physiology and Biophysics
University of Illinois Medical Center
P.O. Box 6998
Chicago, Illinois 60680

The disassemble command |“K ") pro­
vided by the AIM 65 monitor is a useful
aid to program debugging. This com­
mand disassembles object code from
memory into mnemonic instruction
codes, which are output to the
display/printer fd/pj along with the
instruction address, hex opcode, and
any operand. The usefulness of instruc­
tion disassembly can be significantly in­
creased by a modification of the monitor
routines which allows the disassembled
code to be stored in memory as well as
output to the d/p. Since the output of
the disassembler is in ASCII format,
disassembly to memory provides the ob­
ject code in a form accessible to both the
AIM Text Editor and the Assembler.

Once the disassembled code can be
accessed by the Editor, it can be
modified with much greater ease. This
is particularly advantageous when it is
necessary to insert a new instruction in­
to the main body of a set of object code.
Normally this involves re-entering all of
the code below the new instruction. If,
however, the object program is dis­
assembled to memory, the Editor can
perform the insertion with relative ease;
address modifications can also then be
done with the Editor.
>

The idea for the program that I pre­
sent here is from a program which ap­
peared in the first issue of The Target.

No. 39 - August 1981

Figure 1: Assembly listing: disassembling to memory.

* DISASSEMBLING TO MEMORY

• *
BY L .P . GCNZALEZ

TGLO EPZ $00

TCHI EPZ $01

BOTIN EPZ $E1 ;LAST ACTIVE LINE

TEXT EPZ $E3 ; BEGIN TEXT BUFFEK

END EPZ $E5 ;TEXT BUFFER EMD

COUNT ECU ?A419
ADDR ECU $A41C

PKIBUF ECU $A460

Ml BQU $EOOO ; MONITOR MSGS

M5 ECU $E01C ; 'MORE?1

EMSGA BOO $E0GC ; 'EDITOR'

EMSGB BQU $E072 ; ' .EMD'

; SUBROUTINE ADDRESSES

START EQU $E182 ; MONITOR EMTKY

DCNE BQU $E790
FRCM BQU $E7A3

TO EQU $E7A7

KEP EQU $E7AF

PSL1 BQU $E837

BLANK BQU $E83E

KEPR EQU $E970

CRLOW EQU $EA13

CRCK BQU $EA24

RD2 BQU $EA5D

ADDIN BQU $EAAE

DISASM EQU $F46C

0E00
*

ORG $EOO

OEOO

OEOO

OEOO ;READ AND STORE PARAMETERS

OEOO

OEOO 2QA7E7 JSR TO ;READ BUFFER START

0E03 AD1CM LTft ADDR

0E06 8500 STA TOLD

0E08 85E3 STA TEXT

0EQA AD1DA4 LEA ADDRfl

0E0D 8501 STA ran
0E0F 85E4 STA TEXTt-l

0E11
0EI1 ;READ BUFETK END AND MIC TO

0E11 ; ALLOW FOR TEXT END CHARACTER

0E11
0E11 2013EA JSR CRLOH

0E14 A06C LDY #EMSGA-M1

0E16 2QAFE7 JSR KEP

0EI9 203EE8 JSR BLANK

0E1C AQ72 LDY IEMSGB-M1

0E1E 2QABE7 JSR KEP

0E21 2QAEEA JSR ADDIN .

0E24 AD1CA4 U » ADDR

0E27 85E5 STA Q ®

0E29 AD1DA4 Lift. ADDR+1

(Continued)

MICRO - The 6502/6809 Journal 25

The program sent disassembled instruc­
tions to a VIA port. Since I wanted to be
able to edit and re-assemble the dis­
assembled code, my program dis­
assembles one-instruction-at-a-time,
reads the print buffer, and writes the
ASCII instruction code and operand to
specified memory locations. Then, the
Text Editor can be entered to allow
listing or modification of the source
code. The resulting file contains a
source program which can serve as input
to the Assembler.

The first line of the generated source
file is an assembly language command
which sets the program counter to the
original location of the object code. The
remainder of the file contains lines of
the symbolic instruction codes and
operands in Assembler-compatible for­
mat. The instruction address and hex
opcode, contained in the original output
of the disassembler, are deleted, while
the mnemonic instruction code and any
operands are retained. Each line is ter­
minated with a carriage return character
($0D) and the entire file is terminated
with the Assembler ".EN D " directive
and the Editor's text-end character ($00).

Since the disassembler outputs
operands in hexadecimal format with­
out the hex symbol ($), this symbol is
added where appropriate. Also, the ac­
cumulator addressing mode is indicated
by ". A'' on the initial disassembled out­
put. The is removed from the final
output file to allow subsequent input to
the Assembler.

The assembly listing and symbol
table for this program are presented in
listings 1 and 2. The program can be
relocated by simply changing the pro­
gram origin.

Executing the Program

When the program is executed,
“TO = ” is displayed. The beginning
location for storage of disassembled
code should be entered; this will be the
beginning of the Editor, text buffer. The
user is then requested by the program to
enter the "EDITOR END" which is the
ending address for the Editor text buffer.
Next, the beginning location of the code
to be disassembled is entered in
response to the displayed message
“FROM = ” . Finally, enter the number
of instructions, to be disassembled (two
digit decimal number; return, space, or

=" 01 in s tru c tio n). A fter
disassembly of up to 99 (decimal] in­
structions, the message “MORE?" will
be displayed. The user can enter "Y ” to
continue disassembling, or enter any
other character to quit.

0E2C 85E6
0E2E 38

0E2F A5E5

0E31 E901

0E33 85E5
0E35 B002

0E37 C6E6

0E39 2013EA
0E3C 2QA3E7

0E3F

0E3F
0E3F

0E3F A92A

0E41 20100F

0E44 A93D

0E46 20100F

0E49 A924
0E4B 20100F

0E4E AD1DA4

0E51 20FC0E

0E54 AD1CA4

0E57 20PC0E

0E5A A90D
0E5C 20100F

0E5F

0E5F 20D7E5

0E62

0E62

0E62

0E62 2037E8

0E65 205DEA

0E68 B0F8

0E6A 48

0E6B 2024EA

0E6E
0E6E

0E6E

0E6E- A901
0E70 8D19A4

0E73 206CF4
0E76

0E76

0E76

0E76 A209
0E78 BD6QA4

0E7B E00C

0E7D

0E7D F018

0E7F B005

0E81 297F

0E83 4C970E

0E86 C920
0E88 F026

0E8A E00D

0E8C D009

0E8E C923
0E90 DOOB

0E92 20100F

0E95 A924
0E97 20100F

0E9A 4CBOOE

0E9D

0E9D
0E9D

0E9D C928

0E9F P0F1

0EA1 C92E

0EA3 FOC®
0EA5

0EA5

0EA5
0EA5

0EA5

0EA5 A924
0EA7 201OOF

OEAA BD6QA4

OEAD 4C970E
0EB0 E8

0EB1 E014
0EB3 D0C3

0EB5 A90D

0EB7 201OOF
0EBA 202EE7

STA ENTH-1
SEC

LDA END

SBC #$01
STA END

BCS CNTINU

rax: END+1
CNTINU JSR CRLOW

JSR FROM

;SET UP PROGRAM OF

U A ■ *

JSR ADINC

IDA ' =

JSR ADINC

IXft
JSR ADINC

U A ADDR+1

JSR TQASCI

IDA ADDR

JSR TQASCI
LDA *$0D
JSR ADINC

JSR $E5D7

; DISASSEMBLE ViffiRE?

;SAVE‘ ADDRESS FOR DISASSEMBLER

READ # OF INSTRUCTIONS (DECIMAL 1-99)

HOWMJY JSR PSL1

JSR RD2

BCS HOWfclY

PHA

JSR CRCK

DISASSEMBLE ONE INSTRUCTION

DIS1 LDA #$01
STA COUNT

JSR DISASM

SKIP PC AND OP CODE

U K #$09

RDBUF U A PRTOUF.X

CPX #$0C
;POT BLANK BETWEEH MJ0ENIC AND AECRESS— SKIP OTHER HLANKS

BEQ STORE

SPACE

HXSYM

STORE

BCS SPACE

AND #$7F

JMP STORE

CMP #$20
BEQ NEXTX

CPX #$0D

BNE STORE
CMP #$23
BNE PAR0J

JSR ADINC

IDA '$
JSR ADINC

JMP NEXTX

;STCIP MSB FROM MJDCNIC

; CHECK FOR ADDRESS FIELD

;IF '# ' , STORE IT AND STORE HEX SYMBOL

IF ' (' STORE IT AND STORE HEX SYMBOL

PARED CMP '{

BEQ HXSYM

CMP #$2E

BEQ NEXTX

N0T,# , , ‘ .\ OR ’ (• —
MUST BE ADDRESS, SO

STORE HEX SYMBOL FIRST.

LDA '$
JSR ADINC

LDA PRIBUF.X
JMP STORE

NEXTX INX

CPX #$14
BNE RDBUF

H A #$0D

JSR ADINC
JSR $E72E

.•OUTPUT CR AS IAST CHARACTER

(Continuec

26 MICRO - The 6502/6809 Journal No. 3 9 -August 19S

OEBD

0EBD ;ARE WE ECNE7

OEBD

OEBD 68 PLA

0EBE 8D19A4 STA COUNT

0EC1 2090E7 JSR DONE
0EC4 48 PHA

0EC5 DOA7 BNE DIS1
0EC7
0EC7 ; DISASSEMBLE M3RE?
0EC7

0EC7 A01C ICY #M5-M1 ;M0RE?
0EC9 2070E9 JSR KEPR

OEOC C959 CMP 'Y
0ECE D003 BNE ADDEND
0ED0 4C620E JMP HOWMJY

0ED3
0ED3 ;ADD ' .EMD' i
0ED3

OED3 2013EA ADDEND JSR CRLOW
0ED6 A200 U K #$00
0ED8 BD3D0F ENDING LEft MESG.X

0EDB 20100F JSR ADINC
OEDE E003 CPX *503
0EE0 P004 BEQ FINISH

0EE2 E8 INX
0EE3 4CD80E JMP ENDING
0EE6

OEE6 .-CLOSE FILE, RECORD BOTTOM LINE
0EE6 ;AND ENIER MONITOR
0EE6

0EE6 A90D FINISH LDA #$0D
0EE8 201OOF JSR ADINC
OEEB A900 LDA #$00

0EED AOOO LDY #$00
0EEF 9100 STA (TQtO),Y
0EF1 A500 Im TOLO

0EF3 85E1 sta b o t in

0EF5 A501 IDA TOHI
0EF7 85E2 STA BOTLNfl

OEF9 4C82E1 JMP START
OEPC
OEPC . ;CGNVEKT 2 HEX CHARACTERS TO ASCII

OEPC
OEPC 48 TQASCI PHA
OEFD 4A LSR

OEFE 4A ISR
OEFF 4A LSR

0F00 4A LSR

0F01 20070F JSR CNVRT
0F04 68 PIA
0F05 290F AND #$0F

0F07 18 CNVRT CLC
0F08 6930 ADC '0
OFOA C93A CMP #$3A ; ' 9 ' + 1

OFOC 9002 BOC ADINC
OFOE 6906 ADC #$06
0F10

0F10 .•STORE CHAR AND INC ADDRESS
0F10

0F10 AOOO ADINC ICY #$00

0F12 9100 STA (TtX*>),Y
0F14 E600 INC TOLO
0F16 D002 BNE TEST

0F18 E601 INC TOHI

OF1A A500 TEST IDA TOLO
OF1C C5E5 CMP END

0F1E D01C BNE RETURN

0F20 A501 IDA TCHI

0F22 C5E6 CMP END+1

0F24 D016 BNE RETIURN
0F26 2013EA JSR CRLOW
0F29 203EE8 JSR BLANK

0F2C A06C ICY #EMSGA-M1
0F2E 2QAFE7 JSR KEP
0F31 203EE8 JSR BLANK

0F34 A072 ICY #EMSGB-M1
OF36 20AFE7 JSR KEP
0F39 4CE60E JMP FINISH

0F3C 60 RETURN RTS
OF3D •
0F3D 2E454E MESG ASC '.END'

0F40 44

When disassembly is complete, or
when the text buffer is filled, the buffer
limits and last active line parameters are
set up for the Editor, and the program
control jumps to the AIM monitor. The
user can then enter the Editor with the
monitor "T" command to examine and
edit the generated source file, and then
use this file as input to the Assembler. If
the text buffer becomes filled during
disassembly, disassembly stops, the
message "EDITOR END" is displayed,
and the monitor is entered.

I have found this program to be par­
ticularly useful for accessing and editing
sections of code from the AIM monitor
ROM for inclusion in my programs.
Listing 1 presents a sample run of my
disassemble-to-memory program with
the disassembly of a short monitor
routine. The listing includes the output
of the AIM disassembler during program
execution, followed by an editor listing
of the generated source file.

This program can be used any time it
is necessary to alter a program which is
available only in object code. As such,
Disassembling-To-Memory is a useful
utility for AIM microcomputer systems.

Figure 2: Sample run of the disassembling
to memory program. Prior to execution the
AIM printer was toggled to “ON”, so that
the listing Includes the program dialogue
and the output of the AIM disassembler.
This Is followed by an entry to the AIM
Editor with the “T” command and a listing
of the program generated source file.

* =0E00
0 /

TO = 0000
EDITOR END = ODOO
FROM = EA46
/10

EA46 48 PHA
EA47 4A LSR A
EA48 4A L SR A ”
EA49 4A LSR A ”
EA4A 4A LSR A "
EA4B 20 JSR EA51
EA4E 68 PLA
EA4F 29 AND #0F
EA51 18 CLC
EA52 69 ADC #30

MORE?Y 04
EA54 C9 CMP #3A
EA56 90 BCC EA5A
EA58 69 ADC #06
EA5A 4C JMP E9BC

MORE?N
T

* = $EA46
= L (Continued)

No. 39 - August 1981 MICRO - The 6502/6809 Journal 27

Figure 2 (Continued)
/

OUT = R
* = $EA46
PHA
LSRA
LSR A
LSRA
LSRA
JSR $EA51
PLA
AND #$0F
CLC
ADD #$30
CMP #$3A
BCC $EA5A
ADD #$06
JMP $E9BC
END

Larry Gonzalez is an Assistant Professor of
physiology and biophysics at the
University of Illinois Medical Center. He
has 12 years of programming experience in
high-level languages and several years in
the use of minicomputers for real-time
data acquisition and signal analysis.
During the last two years he has been
developing a system using an AIM 65 in
the collection and analysis of
electrophysiological data.

CBM/PET? SEE SKYLES
LU
LU
CO

. CBM/PET?
a They laughed when I sat down
at my PET and immediately pro­
grammed in machine language...
just as easily as writing BASIC.”
With the new Mikro, brought to you from England by Skyles
Electric works, always searching the world for new products for PET/CBM owners. A
4K machine language assembler ROM that plugs into your main board. At just $80.00 for
the Mikro chip, it does all the machine language work for you; all you have to do is start
laying down the code.
The Mikro retains all the great screen editing features o f the P E T .. .even all the Toolkit
commands. (If you own a Toolkit, o f course.) Sit down and write your own machine
language subroutine. The program you write is the source code you can save. And the
machine language monitor saves the object code. The perfect machine language answer
for most PET owners and for most applications. (Not as professional as the Skyles Macro-
TeA...not as expensive, either.)
A great learning experience for those new to machine language programming but who
want to master it easily. Twelve-page manual included but we also recommend the book,
“ 6502 Assembler Language Programming,” by Lance A. Leventhal at $17.00 direct
from Skyles.
Skyles guarantees your satisfaction: if you are not absolutely happy with your new
Mikro, return it to us within ten days for an immediate, full refund.
Skyles Mikro Machine language assembler... $80.00
‘ ‘6502 Assembler Language Programming’ ’ by Leventhal... 17.00
Shipping and Handling................................(USA/Canada) $2.50 (Europe/Asia) $10.00

California residents must add 6% /6lA% sales tax, as required.

Skyles Electric Works
231E South Whisman Road
Mountain View, California 94041
(415) 965-1735

Visa/Mastercard orders: call tollfree
(800) 227-9998 (except California).
California orders: please call (415)
965-1735.

MCRO / lA ia O " ■ S 3 1 A M S 3 3 S c J L B d / IA ia O

GET F R E E S O F T WA R E F O R Y O U R APPLE?! !

HOW? Just order any of the items below, and for every $100 worth of merchandise order an item
from the Bonus Software Section at NO COST! C.O.D. & Personal Checks accepted for all orders.

HARDWARE BY APPLE

APPLE II PLUS, 48k 1199
DISK DRIVE+CONTROLLER (13) 535
DISK DRIVE only 445
Language System w. Pascal 397
Silentype Printer & Interface 549
Integer or Applesoft Firmware Card 159
Graphics Tablet 645
Parallel Printer Interface Card 149
Hi-Speed Serial Card 155

VIDEO MONITORS

Leedex-Video-100 12" B&W w/Cabte 139
Leedex 12" Green w/Cable 165
Leedex 13" COLOR MONITOR & cable 399

SOFTWARE by APPLE

APPLE FORTRAN 159
APPLE PILOT 125

SOFTWARE by Others
PEACHTREE BUSINESS SOFTWARE CALL
VISICALC 120
EZ WRITER PROF. SYSTEM 229
APPLE FORTRAN by MICROSOFT 159
APPLE BASIC COMPILER by MICROSOFT 315
APPLE COBOL by MICROSOFT 599
MUSE SUPER-TEXT II 139
PROGRAMMA APPLE PIE 119

HARDWARE by Others HARDWARE PRINTERS

HAYES MICROMODEM II 300 hv Mountain fiimnnfer
VIDEX VIDEOTERM 80 W. GRAPHICS 320 EPSON MX-80 515
MICROSOFT Z80 SOFTCARD 269 Clock/Calendar Card 239 EPSON MX-70W. GRAPHICS 415
MICROSOFT 16k RAMCARD 159 A/D & D/A Interface 319 CENTRONICS 737 737
CORVUS 10MB HARD DISK CALL Expansion Chassis 555 NEC SPINWRITER 5510 RO 2795
SSM AIO SERIAL/PARALLEL A&T 189 ROMplus Card 135 VISTA V300 DAISY WHEEL 25CPS 1750
MICRO-SCI Disk 8i Controller 495 Mark Sense Card Reader 995 VISTA V300 DAISY WHEEL 45CPS 2025

BONUS SOFTWARE HERE!

Lst u i acquaint you w ith MESSAGE-MAKING SOFTWARE.
Ju«t piece th * disk in the APPLE, an tar th# text, and co lorfu l,
dynamic massages appear on the screens of TV sets connected to
the computer. Use the software to broadcast messages on T V
scream In schools, hospitals, factories, store w indows, exh ib it
bootf>% etc. The fo llow ing program is our latest release:
SUPER MESSAGE: Creates messages In full>page "chunks".
Each message allows statements o f mixed typestyles, type sizes
and color% In m ixed upper and lower case. S tyles range from
regular APPLE character^ up to doub(*>slze, doubla-w idth char­
acters w ith a heavy, bold f o n t S ix colors may be used fo r each
d iffe ren t typestyle. V ertica l and horizonta l centering are a va il*
bie, and word-wrap Is automatic. Users can chain pages together
to make multi-page massages. Pages can bo advanced manually
or autom atically. Multl*pegc messages can be stored to disc or
recalled Instantly.
REQUIRES 48 K & ROM APPLESOFT % SO.

APPLE PLOTS YOUR D A T A & KEEPS YOUR RECORDS TOO
APPLE D A T A GRAPH 2.1: P lo t* up to 3 superimposed curves
on the HVres Soroen bo th the X A Y axes dimensioned. Each
curve consists o f up to 120 pieces o f d a t* Graphs can be stored
to disc and recalled im m edia tely fo r upd a tin g Up to 100 graphs
can be stored on the same d ltc . Greet fo r S tock-m arket Charting,
Business Management, and Claseroom instruction !
REQUIRES 48 K & ROM APP LES O FT................................ .. $ 40.
APPLE RECORD M A N A G ER : A llo w s complete flies to be
brought in to m emory so tha t record searches and m anipulations
are instantaneous. Records w ith in any file can conta in up to
30 fields, w ith user-defined heedlngs. In fo rm a tion can be string
or num arlc. Users can browse th ru flies using page-forward, paga-
backward o r random search commands. Records can easily be
searched, altered o r sorted a t w ill. Files can be stored on the
same drive as the master program, o r on another. If a second drive
Is available. Records o r f lias can be prin ted , if daslrad.
A dd itiona l modules coming are a STATISTICS INTERFACE,
CHECKBOOK, M A IL IN G LIS T % D A TA -E N TR Y .
REQUIRES 48K A ROM A PPLESO FT................................... $ 35.
* A ll Software above on Disk fo r APPLE DOS 3.2, convertible

to 3.3.

28

CONNECTICUT INFORMATION SYSTEMS CO.
218 Huntington Road, Bridgeport, CT 06608 (203) 579-0472

MICRO - The 6502/6809 Journal No. 39 - August 1981

: SEE
SKYLES...CBM

/PET?
SEE

SKYLES

Sorting

Listing 1

ULi-i U u iti-b U K i t UK INDEXES
KEM QUICK SUK t P 26J2 8 MICRO JULY 1980
REM PRINT LIMES 162 c. 185 MAY BE REMOVED
INPUT "NUMBER TO BE SORTED: " rN
D id SM 20)
DIM V *(N + 1)»S S X (N + 1)
REM TEST FOR SORT FOR NINE D IG IT Z IP CODES

JO

90

94

95
99

100 FOR I = 1 TO N
103 S S X (I> = I
105 V * (I i = " 4 " : FOR J = q
d i i '))) : n e x t j
106 PRINT V t(I i
110 NEXT : PRINT
f i l l 2 REM SORT STARTS HERE
113 REM ALSO Se£ LIN E S 9 4 -9 5
t m U$(N + 1) = "9 9 9 9 9 9 9 9 9 “ :SS%<N
1 1 6 w o > = “ : s s z (o > = o : rem
100 STARTS WITH 1=1
120 p = i : a = n : s t = o

IF P > = Q THEN 170
K = Q + i : GOSUB 1145

IF J - P < 8 - J THEN 150
GOSUB 4 0 0 ! GOTO 160
GOSUB 500

130
135
140
145
150

TO 8 : U $ (I) = V l(I) + STR$ < INT (1 0 * RN

+ 1) = N + 1
THESE VALUES INCLUDED BECAUSE LIN E

" iS T » TAB< 1 0 > ;"P = " iP S TAB(17)"Q= "JQ
160 ST = ST + 2
162 PRINT ” TOP=
165 GOTO 130
170 IF ST = 0 THEN 200
130 Q = S c< S T)!P = SK(S T - - 1)
135 PRINT “ TOP= "J S T ; TAB< 1 0 > i"P = "»P J TAB(
190 ST = ST
200
XT

201 END

: : g o to 130
TO N ! PRINT

17) “ Q= “ }Q

I f TAB(5) iS S X < I> ? TAB(10) ! V*< sSX(I)) J NE

400 SK(ST + 1) = PJSIUS r + 2) =
500 SK< ST + 1) = J + 1 !SK(ST + ;
1 1 4 5 vi = s s % < p) :v h * = v$<ni>:i
1160
1165
1170
1175
1180

J = J
GOTO 1160

i = I + i :
GOTO 1170
IF J < =

1*. IF V$<SSX<J>>

J - ISP =
) = q : q =
= p ;o = k

= VH* THEN 1170

J + 1 ! RETURN
J - i : RETURN

IF V*(SSX< I)) = VH* THEN 1180

= I THEN 1200
1190 GA = S S X (I) !G B = S K Z (J)
11 95 SS%< I > = G B :S S Z (J) = GAi GOTO Y160
1200 S S Z (P) = SS%< J)SSS%(J) = V I : RETURN

An application of Quicksort to
sort a file where the individual
members cannot be moved. The
Indexes of the individual
members are moved to
implement the sort.

William R. Reese
6148 Persimmon Tree Court
Englewood, Ohio 45322

In the July 1980 issue of MICRO (26:13),
the article on sorting by Richard Vile in­
terested me. I was looking for a faster
sort for my mailing list programs. That
article assumed that you can move the
numbers or names that you are sorting.
In my mailing list programs, I cannot do
that. I work with files of 200 to 400
names and addresses on several mailing
lists that are on disk. However, I took
the quicksort listed on page 28, changed
it from Integer BASIC to Applesoft
BASIC, and modified it to sort on an
index rather than sort on the numbers
and/or names themselves.

While I was doing this conversion, I
remembered that the post office was
planning to change zip codes from 5 to 9
digits. Since my mailing programs
sorted by zip before printing the labels, I
used nine-digit zip codes for testing dur­
ing the conversion process.

When I want to sort a group, a Sort
Sequence Index [see line 103 of listing 1
for SS%) is used. This way I can move
these sequence numbers instead of mov­
ing the actual file on the disk. In modi­
fying the Apple Quicksort in Mr. Vile's
article, I tried to keep the line numbers
the same lor easy cross reference. This
helped a lot while I debugged the
program.

The finished conversion product is
given in listing 1. (Figure 1 is a list of
variables and purpose, and figure 2 is for

those who are familiar with the article
noted above.) Lines 90-110 are used to
generate 9-digit zip codes that start with
4. The important difference between
this program and Mr. Vile's is the
subroutine starting at 1145. Notice that
the comparisons are based on the Sort
Sequence Index (SS%) instead of the
numbers themselves. Compare figure 3
copied from the original article.

As you can see in the sample run
(run 1) 20 numbers were randomly
created. The numbers themselves were

not moved, but the Sort Sequence Index
was. The smallest zip code the sort
found had an index of 17, and the largest
had an index of 4. I then ran this pro­
gram three times with 200, 300, and 400
numbers. The largest number TOP
became was 12. Line 94 relflects this
discovery.

My next project was to apply this
Quicksort to handle multifield sorts,
i.e., sorting a mailing list by last name,
then the first name. In this example the
last name is called the primary sort and

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 29

the first name would be the secondary
sort. In listing 2, V$ is the primary sort
and W$ is the secondary sort.

The differences between listing 1
and listing 2 are in three areas:

1. The generation of the numbers to be
sorted (lines 94-115),

2 . the printout at the end of the pro­
gram (line 200),

3. the comparisons in subroutine 1145
(lines 1160-1172).

In lines 94 through 115, I created a
one-digit number V$ as the primary sort
field and a 9-digit zip code for the secon­
dary sort field. Line 200 was changed to
print out both V$ and W$. Lines
1160-1162 and 1170-1172 are tricky.
Compare lines 1160-1165 in listing 1 to
those in listing 2. To understand this,
just remember that you must go back to
line 1160 whenever J is high, and go to
1170 when J is low or equal.

If you get to line 1162 then V$
(SS%(J)) = VH$ and you test your secon­
dary sort field. If you have more than 2
sort fields, then you repeat the logic in
1160-1161 over until you get to your last
sort field. Then the last sort field is
handled just like W$ is, in line 1162.

In one of my applications I have 4
sort fields. If the program finds two
records with all 4 sort fields equal, then
the program stops, because in that appli­
cation no two records should be exactly
the same.

Lines 1170-1172 have been modified
just like lines 1160-1162. A sample run
with 20 pairs of numbers is given as an
example of this program (run 2).

I hope that this article has helped
you to sort out your problems with sorts
when you cannot move the entries
themselves in the sorting process.

Bill Reese has a Master of Mathematics
from Cleveland State University. He is a
computer specialist for the U.S. Air Force
at Wright Patterson Air Force Base. He
owns an Apple n which he uses to support
a newsletter mailing list for his church's
singles club. He has also computerized his
model railroad's waybills and switching
lists.

Figure 1

Vile’s My
Article Listing Purpose

TOP ST Point to top of stack
STACK SK STACK of partitions

to sort
A(I) V$(I) Field to be sorted

V VH$ Hold field for
comparisons

TEMP GA,GB Temporary holders

Figure 2

Variable Purpose

I,P Local variable, low
number of partition

N Number of items
J,Q Local variable, high

number of partition
SK StacK of partitions to sort
SS% Sort Sequence Index

(Integer Variable)
ST Point to top of stack
V$ Primary sort field
VH$ Hold field for comparison
VI Hold index for comparison
W$ Secondary sort field

Figure 3

1145 VH$ = V$(P):I = P:J = K
1160 J = J - 1:EF V $(J)< = VH$

THEN’1170
1165 GO TO 1160
1170 1 = 1+ 1:IF V $(I)> = VH$

THEN 1180
1175 GO TO 1170
1180 IF J < =1 THEN 1200
1185 TEMP = V$(I)
1186 V$(I)=V$(f)
1188 V$i)]=TEM P
1199 G O T O 1160
1200 V$(P)=V$(J)
1202 V$(J) = VH$
1999 RETURN

Run 1

i-iUi-iBLK Iu a t
4 Ij / 1 ti B V10

buK i t i t ; 20

4 6 W 2 / / yy
4 6 V 0 2 6 7 1 1
4 9 t i 6 y 6 6 2 4
4 9 3 1 5 3 / 2 /
4 5 1 6 3 5 5 3 7
4 6 .1 5 7 6 6 5 0
4 5 9 0 3 6 / 3 /
4 4 3 5 0 1 6 5 6
4 2 9 8 7 9 5 9 7

(Continued)

(Run 1 continued}

459 5 7 3 2 7 9
476 6 00802

440 95 4 7 4 f
j

4 0 8 4 7 0 9 2 3
450
4 8 6

933254
,1 1 S iQ v .X

402 300 85 8
4 7 5 8 9 5 9 8 1

403 563191
4 9 0>j/51 1 £>

TUP ^ '5 P= 1 0= 8

i OP = 4 F- 7 Q= 8
J OP ~ 6 P=P9 8

1 OP - 6 P= 7 Q- 7
COP - 4 F- 1 Q= 5
i OP -- 4 P= 6 0 = 5
TOP - 4 P= 1 0= 4
1 OP = 4 P= 1 0= 1
(OP * 4 P= 3 G- 4
I0P - 4 F- 3 «= 9

(OP - 4 P= 4 Q= 4
I OP n P= 10 Q= 20
FOP - 2 P= 10 Q= 9
COP n

— A. F- 11 « = 20
COP ^ 2 P= 11 Q= 10
TOP — V P= 1 2 Q= 20
TOP n

-- dm P= 1 7 Q= 20
TOP ~ 4 P - 1 7 Q= 1 6
TOP ^ 4 F - 1 8 Q= 20
TOP ^ 4 P= 2 1 20
TOP - 4 P= 1 8 Q= 1 9
TOP ^ 4 P= 18 Q= 17
TOP „ 4 P= 19 Q= 1 9
TOP ? P= 12 Q= 1 5
TOP n' iL P= 12 0= 12
TOP n

— £. P= 14 0= 1 5
TOP ^ 9 P= 1 4 Q= 1 3
TOP ... n

— t- F'= 1 5 Q 1 5
0 0
1 17 4 0 2 3 0 0 8 5 8
2 14 4 0 8 4 7 0 9 2 3
3 19 4 0 8 5 6 3 1 9 1
4 10 4 2 9 8 7 9 5 9 7
5 13 4 4 0 9 5 7 4 7
6 9 4 4 8 5 0 1 6 5 6
7 15 4 5 0 9 8 3 2 5 4
8 6 4 5 1 6 3 5 5 3 7
9 1 4 5 7 1 8 8 9 1 0
10 8 4 5 9 0 3 6 7 3 7
11 11 4 5 9 5 7 3 2 7 9
1 2 ■7/ 4 6 1 5 7 6 6 5 0
1 3 3 4 6 9 0 2 6 7 1 1
1 4 '5 4 6 9 9 2 7 7 8 9
1 5 18 4 7 5 8 9 5 9 8 1
1 6 12 4 7 6 6 0 0 8 0 2
1 7 16 4 8 6 0 1 8 9 5 3
1 8 20 4 9 0 3 7 5 1 1 6
1 9 5 4 9 3 1 5 3 7 2 7
2 0 4 4 9 5 6 9 6 6 2 4

30 MICRO - The 6502/6809 Journal No, 39 - August 1981

Listing 2

x Kti-i -******##¥#**#
10 Kttt QU bUKi IND 2 SORT FIELDS
20 REM QUICK SORT P26J28 MICRO JULY 1980
30 REM PRINT LINES 162 & 185 MAY EE REMOVED
90 INPUT "NUMBER TO BE SORTED: “ iN
94 DIM SK< 2 0)
95 DIM V$(N + 1 >»SS%(N + 1) iU»<N + 1)
99 REM TEST FOR SORT FOR NINE DIGIT ZIP CODES
100 FOR I = 1PT0 N
103 SSX<1 1 = 1
10+ V$(I > = STR$ (INT (10 * RND (1)))
105 U$< I) * *4*1 FOR J = 1 TO 8*U$(I) a U$(I) *
D (1 0)) : NEXT J
106P PRINT i ; TAB< 5)»SSX(I)f TAB(10 >?Y*< SSX< I >)? TAB< 2 0 >JU*<SSX<I >

STRf < INT (10 * RN

i : w$<n + 1) * -9 - :
o: REM THESE VALUES INCLUDED BEC

?Pr TAB(17)"Q

’ iP r TAB(17)MQ=

* > Q

110 NEXT J PRINT
112 REM SORT STARTS HERE
113 REM ALSO SEE LINES 94-95
115 Vt(N + 1) * "9*1 JSS%< N + 1) = N +
116 v * (0) = -o “ :«$ (o> * “ 0 “ js s x (0) =
AUSE LINE 100 STARTS WITH 1=1
120 p = i : q = n :s t = o
130 IF P > = 3 THEN 170
135 K = Q + i : GOSUB 1145
140 IF J - p < G - J THEN 150
145 GOSUB 400J GOTO 160
150 GOSUB 500
060 ST = ST + 2
162 PRINT "TOP= " »STi TAB(10)»HP= '
165 GOTO 130
170 IF ST = 0 THEN 200
180 0 = SK(ST):P * SKtST - 1)
135 PRINT "TOP* "» ST» TAB(1 0) f “ P= ‘
190 ST@= ST - 2: GOTO 130
200 FOR I] 0 TO NJ PRINT I f TAB< 5>?SSX<I)» TAB< 10)»V»(SSZ(I))? TA
B< 20) f U$(SS%(I)) : NEXT
201 END
400 SK(ST + 1) - p : sk<st + 2) = J - U P * J + 1
500 sk<st + i) = j + i : s k (s t + 2) = q :q = J - 1
i i4 S v i * ss% (P):vh$ ~ v$ (v d ; i » p : j * k
1160 J = J - l i IF V*(SkX<J)> < VH$ THEN 1170
1161 IF V$hSS2< J)) > VH« GOTO 1160
1162 IF W*(SSX(J>) < } U $(V I) GOTO 1170
1165 GOTO 1160
1170 I = I 4- 1 * IF V$< SSK I)} > VH$ THEN 1180
1171 IF V$(SSZ<I)> <PVH$ GOTO 1170
1172 IF V a iS S X lD) > » W $tV l) GOTO 1180
1175 GOTO 1170
1180 IF J < = I THEN 1200
1190 GA * SS%(I):GB =PSSX(J>
1195 SSX(I) = GB:SSZ(J> a GAJ GOTO 116P
1200 s s x (p > * ss% (jr.ssx< o> = v i : re tu rn

RETURN
RETURN

Bun 2

j n u m t H iu bl uuh ' \t u : 20
1 1 4 4 0 4 2 5 3 6 2 8
2 2 1 4 0 2 5 4 7 7 2 2
o 3 Lj 4 3 4901 450
4 4 Li 4 7 9 7 5 9 8 2 3

5 8 4 8 6 2 6 9 5 8 5
£ 6 7 4 1 + 0 1 7 8 6 2
7 7 2 4 1 9V 275 48
i i 8 4 4 4 4 6 0 3 6 5 2

9 8 4 0 9 9 3 2 5 0 6
10 10 1 4 4 3768 300
11 11 9 49 9 4 3 8 8 4 7
12 12 S 48 2 9 7 7 1 8 4
13 13 9 43 5 9 7 6 4 6 9
14 14 7 4 8 3034 670
15 15 8 4 0 7 5 7 1 0 0 9
1 6 16 4 4 7 6 5 2 7 1 7 2
1 7 17 8 4 5 5 9 3 7 0 5 5
I S 18 6 4 2 1 9 6 8 9 4 2
1 9 19 8 4 4 9 9 1 9 3 7 6
20 20 0 49 1 3 8 1 9 5 9

TOP - 2 P = 1 Q= 4
TOP = 4 P = r Q= 4
TOP - 4 P = 1 Q = 3
TOP - 4 P = 4 Q= 3
TOP = 4 P = 1 Q= 2
TOP = 4 P = 1 Q= 0
TOP - 4 , P =

H Q= 2
TOP - 2 'p = 6 Q= 20
TOP - 2 ' = 6 Q= 9
TOP = 4 P = 6 Q= 6
TOP - 4 P = 8 Q= 9
TOP = 4 P = 8 Q= 7

TOP = 4 P= 9 G= 9
TOP — 2 P= 11 G= 20
TOP — 2 P= 21 Q= 20
TOP — 2 P= 11 0= 19
TOP - 2 P= 19 Q= 19
TOP — 2 P= 11 Q= 17
TOP - 2 P= 11 Q= 12
TOP = 4 P= 11 0= 10
TOP - 4 P= 12 Q= 12
TOP - 2 P= 14 Q= 17
TOP = 2 P= 14 Q= 13
TOP - 2 P= 15 Q= 17
TOP = 2 P= 18 Q= 17
TOP =: **> P-= 15 Q= 16
TOP - 2 P= 15 Q= 14
TOP = 2 P= 16 Q= 16
0 0 0 0
1 20 0 4 9 1 3 8 1 9 5 9
'■> '.i 1 4 0 2 5 4 7 7 2 2
3 10 1 4 4 3768 300
4 7 2 41 9 9 2 7 5 4 8
5 1 4 4 0 4 2 5 3 6 2 8
6 8 4 4 4 4 6 0 3 6 5 2
7 16 4 4 7 6 5 2 7 1 7 2
a 3 5 43 4901 450
9 18 6 4 2 1 9 6 8 9 4 2
10 6 7 4 1 + 0173 62
11 14 7 48 3034 670
12 15 8 + 0 7 5 7 1 0 0 9
13 9 8 4 0 9 9 3 2 5 0 6
14 19 8 ++ 9 9 1 9 3 7 6
15 17 8 P + 5 5 9 3 7 0 5 5
16 4 8 + 7 9 7 5 9 8 2 3
17 12 8 e +82 9771 8+
18 5 8 + 8 6 2 6 9 5 8 5
19 13 9 ' +35 976+ 6 9
20 11 9 + 99 +3 88+7

Need Q solution for

Floppy Disk Lube

Just THR66 drops can:
• Prolong useful disk life.
• Increase head life.
• Allow initialization of "problem"

disks.
• Save 'unbootable’ disks.
• Reduce 'glitching' problems.
• Cut nuisance problems.

FIOPPV DISK 0106 - 'h oz. (y g A A
UUITH APPLICATOR.

Add I I :50 shipping and handling. Ohio
residents odd 5'A% soles tax.

DOSUJBRt. INC.

cS v ^ Q o d .O h io A 4 U 0

& » u At m i !B BMMSMr 1M ■■■MM ■■■BMI**4 JM M. MMMM HMM N m Ml Ml ■■■■■■M II ■■ U|. ■■■■MM ■■
H i a m ■■ « M . M B B M f B | |

SSiffii. J S S

ii li iifih ns"
: : : :

S
»mu mi

i v m i l B 'H k
• 1981

H I - R E S G R A P H I C S
D U M P R O U T I I N J E S

Low cost, easy to use, reproduction
of both HiRes graphic pages in mul­
tiple scale factors with normal or
inverse inking and variable image
indentation.

Available now for Epson MX-70,
graphic MX-80; Anadex DP-9xxx;
and Integral Data 440/445/460/560.
Other versions coming soon.

SmartWare
2281 C obble Stone Court

Dayton, O hio 45431
Dealer Inqulrlet Invited!

jmcoo

No. 39 - August 1981 MICRO - The 6502/6809 Journal 31

Y o u m n & T C
Attend the biggest public computer shows in the country.
Each show has 100,000 square feet of display space fea­
turing over 50 Million Dollars worth of software and hard­

ware for business, industry, government, education, home
and personal use.

You’ll see computers costing $150 to $250,000 including
mini and micro computers, software, graphics, data and word
processing equipment, telecommunications, office machines,
electronic typewriters, peripheral equipment, supplies and com­
puter services.

All the major names are there including; IBM, Wang, DEC,
Xerox, Burroughs, Data General, Qantel, Nixdorf, NEC, Radio

Shack, Heathkit, Apple, RCA, Vector Graphic, and Commo­
dore Pet. Plus, computerized video games, robots, com­

puter art, electronic gadgetry, and computer music to
entertain, enthrall and educate kids, spouses and peo­

ple who don’t know a program from a memory disk.
Don’t miss the Coming Of The New Computers-

Show Up For The Show that mixes business with
pleasure. Admission is $5 for adults and $2 for chil­
dren under 12 when accompanied by an adult.

Ticket Information
Send $5 per person with the name of the show
you will attend to National Computer Shows,
824 Boylston Street, Chestnut Hill, Mass. 02167.
Tel. 617 739 2000. Tickets can also be purchased
at the show.

THE
NORTHEAST
COMPUTER

SHOW
BOSTON

Hynes Auditorium
PRUDENTIAL CENTER

THURS-SUN
OCT 15-18,1981

11 AM TO 7PM WEEKDAYS
11 AM TO 6PM WEEKENDS

THE
MID-WEST

COMPUTER "
SHOW
CHICAGO

McCormick Place
SCHOESSLING HALL

23rd & THE LAKE
THURS-SUN

SEPT 10-13,1981
11 AM TO 7PM WEEKDAYS
11 AM TO 6PM WEEKENDS

THE
MID’ATlRNTiC
- COMPUTER "

SHOW
WASHINGTON, DC
DC Armory/Starplex
2001 E. CAPITAL ST. SE

(E CAP. ST. EXIT OFF 1295
-KENILWORTH FRWY)
ACROSS FROM RFK

STADIUM
THURS-SUN

SEPT 24-27,1981
11 AM TO 7PM WEEKDAYS
11 AM TO 6PM WEEKENDS

THE
SOUTHEAST

- COMPUTER
SHOW
ATLANTA

Atlanta Civic Center
395 PIEDMONT AVENE AT

RALPH McGILL BLVD
THURS-SUN

OCT 29-NOV 1,1961
11 AM TO 7PM WEEKDAYS
11 AM TO 6PM WEEKENDS

THE
SOUTHERN

- CALIFORNIA-
COMPUTER

SHOW
LOS ANGELES

LA Convention Center
1201 SOUTH FIGUEROA

THURS-SUN
MAY 6-9,1982

11 AM TO 7PM WEEKDAYS
11 AM TO 6PM WEEKENDS

32 MICRO - The 6502/6809 Journal No. 39 - August 19

On Buying a Printer

By Loren Wright

You've decided to buy a printer and are
either impressed or overwhelmed with
the number of choices available. To help
you decide which printer best suits your
needs, we'd like to familiarize you with
printer features and manufacturers.

In researching this article, we tried
to get information from every manufac­
turer of microcomputer-compatible
printers selling for $2000 or less. The
response was not 100%. Some manufac­
turers had moved, others had discon­
tinued inexpensive models, others were

^ out of business, and some simply failed
1 to respond. Nevertheless, we compiled a

substantial sample and will explain the
many features printers offer. For more
information see your local computer
dealer or write the manufacturers. A list
of addresses accompanies this article.

Probably the most important con­
siderations are: "How much does it
cost?" and, "W ill it work with your
computer?" However, there are many
other features to consider. First, you
should analyze youi needs, both present
and future. For instance, if you expect to
be doing a lot of word processing, the
quality of print would be an important
feature. But if you expect to print large
amounts of experimental data, then
speed would be very important.

Characters

Most printers offer 96-character US
ASCT character sets, which include
both upper and lower case alphabets.
Some of the less expensive printers print
only upper case letters, however. This
may be adequate for program listings
and data printouts. Some printers allow
substitution of the character ROM

t jA nadex, Base 2, Axiom IMP), and
^ o th e r s allow at least one programmable

character [Centronics 737 and 739, Base
2, C. Itoh Pro-Writer).

Print Quality

The best print quality is achieved
with a formed character printer of the
daisy wheel or ball (IBM) type. Most are
priced well above our $2000 limit, but
some of the less expensive ones are sold
by C. Itoh, Vista, and NEC.

All others are dot matrix printers.
The smallest matrix used is 5 x 7. The
print head consists of a vertical row of
seven printing needles which are con­
trolled by seven solenoids. These
solenoids lift and raise the needles at the
appropriate moments as the head moves
across the line. Because these characters
usually appear grayish, rather than
black, they are difficult to read —
especially in photocopies or when
reduced for publication. Lower case let­
ters with descenders (the part of the
character that normally extends below
the line, as with g, j, p, q, and y) are
crowded above the line. When extra
needles are added (9 , is a common total)
these true descenders can be produced,
and often an underline can be added.
Centronics 737 and 739, Anadex
DP-9610 RO, and Epson MX-80 are
models with extra needles.

Another way of improving print
quality is to stagger the needles in two
rows. The Integral Data Systems Paper
Tiger uses five needles interwoven with
four. Other, considerably more expen­
sive printers, use as many as 18, thereby
largely eliminating the blank spaces be­
tween the needle imprints that cause
the gray appearance mentioned above.

Yet another method is adopted by
the Epson MX-80; in the double pzint
mode, the characters are first printed
normally, then the paper is advanced
1/216” and those characters are printed
again. This fills in most of the space
created between dots on the first pass.
The MX-80 also has a piint enhance­
ment mode where the needles actually
hit the ribbon harder. This mode is par­
ticularly useful for making multiple
copies. Either of these special modes

cuts the print speed in half and doubles
the wear on the print head. Therefore
these modes should be used judiciously.

Graphics Capability

Some printers allow individual con­
trol of every dot (Victor 5080, Base 2,
Axiom, Centronics 739). This is useful
in producing printouts of Apple Hi-Res
screens. Even computers without high-
resolution graphics can program these
printers to produce high-resolution im­
ages. Base 2 offers an interface for Apple
Hi-Res graphics. In this issue (39:44) a
program is presented to dump the Apple
Hi-Res screen to an Integral Data
Systems Paper Tiger.

Line and Character Spacing

Some of the less expensive printers
have a fixed number of characters per
line, such as 21, 32, 40, 48, or 80. Be
sure to get a line length that will suit
your needs. Most other printers have
line lengths variable from 40 to 132,
selectable with either a program or
switches.

Some printers (notably the Cen­
tronics 737 and 739) have a proportional
spacing mode which produces copy like
our typesetter prints this line. The nar­
rower characters, such as 'I' and 'J,' take
up less space than 'M' and 'W.' The
overall effect is more pleasing than the
'monospace' copy produced by other
printers.

With right-justification (also on the
Centronics 737 and 739), the words line
up at the right margin. Other printers
produce what is called 'ragged right,’
where alignment is achieved only at the
left side of the page.

Variable line separation, subscripts,
superscripts, and elongated characters
are other extras to look for.

Paper Handling

Printer paper comes in a variety of
forms and it is important to know which
types your printer will take.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 33

Fan fold is a continuous length of
paper with holes on each edge. Usually
the edges can be tom off and individual
sheets separated. A wide variety of sizes
and styles is available.

Roll is an inexpensive, long, con­
tinuous roll of paper. Individual sheets
include stationery, letterhead, notebook
paper, scrap paper, and special forms.
Other papers available include self-
adhesive labels and multi-part forms.

The most common method for ad­
vancing paper through a printer is with
an adjustable tractor feed. Centronics
and Epson models have a 'pin feed.'
Both feed methods assure that paper can
move quickly and precisely through the
printer.

Self-adhesive labels and forms can be
accommodated by tractor and pin feeds,
but many of these feed mechanisms can­
not handle the extra thickness and
weight. Printer manufacturers usually
specify the maximum thickness or num­
ber of plies that can be accommodated.

Individual sheets are handled by a
friction feed mechanism (like a type­
writer). These mechanisms will also
handle roll paper, but a horizontal spin­
dle of some sort for the roll is required.

Many printer models offer a com­
bination of tractor and friction feeds.

Special Papers

Some of the less expensive printers
require special paper. Thermal printers
need special heat-sensitive paper. In­
stead of needles, the print head is com­
posed of miniature heating elements
which cause the paper to change color.
Two cautions when using this paper are
in order: 1) The blue-purple color com­
monly available does not photocopy
well, and 2) the image tends to fade, par­
ticularly if transparent tape is applied
over it.

The other kind of paper is electro­
sensitive. The standard needles are
replaced with electrodes, which com­
plete an electrical circuit when applied
to the aluminum-coated paper. The nor­
mally shiny surface is turned black to
form a character image. Handling this
paper can be a very messy undertaking,
as the metal coating rubs off easily.

Both of these special papers are con­
siderably more expensive than the plain
paper, and not as easily available.

The advantage of these kinds of
papers is in the cost of the printer. No
ribbon , or the asso cia ted feed

! PRINTER BONUS —

mechanism, is required, nor are the
seven or more individual solenoids to
control the printing needles. Other
economies such as fixed paper width,
line length, and upper case only, are
available to produce a truly bargain
printer. At some point, however, the dif­
ference in the cost of the paper will add
up to the difference in printer prices.
This may take a few months, or many
years, depending on how much you use
your printer. Another advantage is that
these printers tend to be quieter because
they have fewer moving parts.

If you do decide to buy one of these
non-impact printers, a useful feature is
adjustable print darkness. A higher set­
ting will make the copy more readable,
while a lower one will extend the life of
the print head. Also, as these print heads
get older, the copy they produce gets
lighter, so you will want to compensate
for this aging.

Speed

The speed of a printer may be
specified in characters per second (cps)
or lines per minute. Formed character
printers will typically do 25 to 50 cps,
while dot-matrix printers are usually
much faster. Typical values are 50 to
100 cps, while some print at 30 cps and
others print faster than 200 cps.
Sometimes there is a difference between
the maximum or ''burst'' rate of print­
ing and the average rate.

A number of printer features con­
tributes to the overall speed. Bidirec­
tional printing saves the time consumed
by the extra carriage return required in
unidirectional printing.

Logic seeking means the printer is
able to look ahead and scout out the
most efficient path for the print head.
Both bidirectional printing and logic
seeking require a buffer — an area of
memory in the printer where it can in­
spect things before actually printing.
Even without bidirectional printing or
logic seeking, a buffer can add speed to
the printing process. Until the buffer
fills up, the printer w ill accept
characters as fast as the computer sends
them. Often, the computer is freed for
other duty while the printer is still busy.

The use of special features, such as
proportional spacing, right-justification,
and print formatting may slow the
printer down.

Several printers allow selection of
the baud rate, either with switches or
under program control.

Programmable Features

Some models allow extensive pro
gramming of printer operations. Wt
have already mentioned programmabli
characters, elongated characters, bauc
rates, and line lengths. Other program
mable features may include margins
top-of-form, tabs, and print formattinj
(like print using).

Interfaces

Some printer models are sold a
"designed for" a particular computer
There are a number available for thi
Apple, several for the TRS-80, and a fev
for the PET. Most, however, come witl
either a standard parallel, or RS-232C
serial interface, or both. Special inter
faces for particular machines usually
cost extra. Most microcomputers
however, will work with one of thesi
standard interfaces.

The most common parallel interfaci
is called "Centronics-com patible,'
which consists of seven data bits an<
three handshake bits. There are, how
ever, 8-bit interfaces, and others whicl
do not conform to the Centronics stan
dard. Some additional circuitry or pro
gramming may be required if there i:
not complete interface compatibility.

Other interfaces are 20 mA curren
loop (or TTY) and IEEE-488. The 20 mJ
current loop is used with the AIM, S YM
KIM, and other teletype-orientec
machines. Adapting an RS-232C inter
face to 20 mA current loop is fairly easy
requiring only a few components
IEEE-488 is generally used with thi
PET, but it is also used with Hewlett
Packard and Tektronix controllers, an<
a wide variety of scientific tes
equipment.

Two manufacturers [Base 2 and Vic
tor Data Systems) include all four of thi
above interfaces as standard in thei
printer models. Even the combination o
a parallel and an RS-232C interface wil
increase the flexibility of your printer
making it easier to use with computer
other than your own.

Other Features

With self test, the printer goe
through a series of procedures testin;
some or all of the printer's functions
This may be done on power-up or oi
demand.

An out-of-paper signal lets th-
printer detect when paper has run out
stops printing, and usually sounds ai
audio alarm.

34 MICRO - The 6502/6809 Journal No. 39 - August 198

A Different Approach

The Axiom/Seikosha GP-80M does
not use the standard needle/solenoid
design for impact dot matrix printers.
Instead, it uses a unihammer (single
hammer) which rapidly strikes against
splines on a freely rotating platen behind
the paper. This model is one of the least
expensive printers that do not require
special thermal or electrosensitive
paper. At 30 cps it is also one of the
slowest.

Build Your Own

Heath and Coosol sell printer kits.
The advantages of building a kit are: 1)
you save money, 2) you know how well
it was put together, 3) you get extensive
documentation so you can usually fix it
yourself if something goes wrong. The
disadvantages are: 1) you may do a poor
job of building it, 2) it takes time you
may not have.

Generally, prices are going down
while capabilities increase. Most of the
major computer manufacturers offer one
or more printers as parts of their
' ‘systems.” Often you pay a premium
price for relatively little power. You do
know these printers will work with the

specified computer, however, while it
may take some effort to get a non­
system printer working.

Whether you choose to buy the
‘system’ printer or opt for another, you
certainly won’t be saying, " I had no
choice!”

Anadex, Inc.
9825 De Soto Avenue
Chatsworth, California 91311
Axiom Corporation
1014 Griswold Avenue
San Fernando, California 91340
Base 2
P.O. Box 3548
Fullerton, California 92634
Centronics Data Computer Corp.
Hudson, New Hampshire
Computer Devices, Inc.
25 North Avenue
Burlington, Massachusetts 01803
Mini Teim 1201
Coosol, Inc.
P.O. Box 743
Anaheim, California 92805
Epson America, Inc.
23844 Hawthorne Boulevard
Torrance, California 90505

Heath Company
Benton Harbor, Michigan 49022

Integral Data Systems
Milford, New Hampshire 03055
Papei Tigei

C. Itoh Electronics, Inc.
5301 Beethoven Street
Los Angeles, California 90066
Microtek, Inc.
9514 Chesapeake Drive
San Diego, California 92123
Bytewritei-1
NEC Information Systems, Inc.
5 M ilitia Drive
Lexington, Massachusetts 02173

United Systems Corporation
918 Woodley Road
P.O. Box 458
Dayton, Ohio 45401
DigiTec 6430/6470 Non-impact

Victor Business Products
3900 North Rockwell Street
Chicago, Illinois 60618

Vista
1317 E. Edinger Avenue
Santa Ana, California 92705

A K R O

AIM-65/SYM-PET-KIM-6800
Universal Interface Board Converts AIM-65/SYM

Into Professional Data Logger

MINI MOTHER
BOARD

BANK SELECT.
ADDRESS
(MEMORY)

1S A/D INPUTS
* ± 15 VOLT

POWER
SUPPLY
INPUTS

COLUMBUS INSTRUMENTS INTERNATIONAL CORPORATION

950 N. HAGUE AVE„ COLUMBUS, OHIO43204U.S.A.
PHONE' (614) 488-6176 TELEX: 246514

(Also connects to PET or KIM with adapter cable.
Adaptable to other 6502 and 6800 systems)

CONTAINS:
★ 12 bits, 16 channels, fast A/D converter
★ space for additional 16K RAM memory or 32K

EPROM (or combination)
★ real time clock/calendar with real time interrupt

capability and 10-year lithium battery backup
★ plugs directly into AIM-65 expansion connector

with the help of a mini-mother board which
supports up to three interface boards

★ supplied with supportive demonstration and
control programs

AVAILABLE MODELS:
★ IB-902 Additional Memory

Space (only)$ 390.00
★ IB-902-A Calendar/Clock plus

memory space...............................$ 690.00
★ IB-902-B A/D (12 bits, 16 channels

plus memory space)................... $ 960.00
★ IB-902-AB A/D, plus memory space

and calendar/clock.................. $1,270.00
Mini mother board to support up to three (3)
interface boards.. $65.00

Quantity Discounts Available

No. 39 - August 1981 MICRO - The 6502/6809 Journal 35

Using a TTY Printer
with the AIM 65

While Rockwell provided both
the hardware and software to
permit TTY I/O on the AIM 65,
output to a TTY while retaining
AIM keyboard Input Is not
allowed. The programs
presented In this article provide
for output to a teletype printer
without restricting use of the
AIM keyboard for Input.

Larry P. Gonzalez
Dept, of Physiology and Biophysics
University of Illinois Medical Center
P.O. Box 6998
Chicago, llinois 60680

I recently obtained a TTY printer for use
with my AIM 65 microcomputer. Since
the AIM contains a hardware TTY inter­
face, and TTY I/O routines are provided
in the monitor, I expected little diffi­
culty getting my TTY printer up and
running. While the hardware interface
posed no problem, a closer look at the
monitor I/O routines revealed that TTY
output is allowed only when the
TTY/KB switch is in the TTY position.
This is because the monitor routine
OUTPUT ($E97A) tests the TTY/KB
switch, instead of checking OUTTLG
($A413) before sending a character to the
TTY, or to the on-board Display/
Printer. Thus, entering “L" to indicate
TTY output only works with this
switch in the TTY position. Since I
want to retain use of die AIM keyboard
while sending output to my TTY
printer, the TTY/KB switch must be in
the KB position. This prevents my use
of the OUTPUT routine (called by
OUTALL at $E9BCI.

Listing 1
. *
;* OtfflW HANDLER FOR TTY PRINTER

;* BY LARRY P. GCNZALEZ
. *
;NOTE: LOAD PROGRAM START ADDRESS INTO UOUT ($1QA)

; BEFORE CALLING THIS ROUTINE. FOR THIS

; ASSEMBLY, SET $1QA=500 AND $1QB=$02

OUTTTY EQU $EEA8 ;OUTPUT CHARACTER TO TTY

ORG $200

0200 B00D BCS SEQJD ;TEST FOR FIRST ENTRY

0202 ;

0202 A925 FIRSTM LDA *$25 7 SET TRANSMISSION SPEED

0204 8D17A4 STA ?A417

0207 A900 Uft #500

0209 8D18A4 STA SA418
020C 4C1C02 JMP EMD

020F

020F ;ALL SUBSEQUENT ENTRIES MADE HERE

020F

020F ;NOTE: ACC PLACED CN STACK IN OUTALL

020F

020F 68 SECND PIA

0210 C90D CMP *$0D

0212 D005 ENE OUT
0214

0214 20A8EE TCRLF JSR OUTTTY ;CR AND LF TO TTY

0217 A9QA LDA #$QA
0219 20A8EE OUT JSR OUTTTY

021C 60 EMD RTS

END

Listing 2

OUTPUT HM ELER AND FdW M TEl
PCS TTY PRU JIER

BY LARRY P . OCHZAIJZ

M an ic® ADCRESSES

COHN BQU $E1B2 .•(CHTTOR HJTKY
PSLS EQU $E7DC ;B K K UP CURSOR
HED2 BQU 5E976 ;D IS P IA Y CHARACTER
OUTPUT EQU $E97A ; OUTPUT CHE CHAR TO D /P
CRCK BQU $EA24 ;C U K R POINTERS AND OUTPUT PRINT BUFFER 1
OUTTTY EQU $ESAB jo u n w r c h e ch a r to t t y
CUSEKD BQU ?FEB3 • READ CHE CHAR FJCM THE KEYBOARD

FRUUXt n>z $00 ;ADCRESS CF MSG TO PRINT
PRTF06 BQU $34F ; PRINT B EK) P06ITCCN
p o arr BQU $350 ;PAGE o o u rr
T.TMTHT m u $352 ;U H E 00UJT
PAGING EQU $353 ;P M E FU G
FEU G EQU $354 ,P R m r FU G (Continued)

36 MICRO - The 6502/6809 Journal No. 39 - August 1981

0

Listing 2

T H U BQU $355 ;TnU!
0392 CSC $392
0392 57414E

0395 542050
WANT ASC ‘WANT PAGING (Y /N)? ;'

0396 414749

039B 4X4720
039E 28592F

03A1 4E293F
03A4 3B
03A5 20454E Tni£ S ASC ' ESTER PfGE T T H Z :; 1
03A8 544552

03AB 205041

03AE 474520

03B1 544954

03B4 4C453A
03B7 3B

03B8 504147

03BB 45203B
PAGES ASC 'PAGE

0200

0200
ORG $200

0200 A90D INIT IDA ♦START ; INITIALIZE UOUT
0202 8DQA01 STA $1QA
0205 A902 IDA /START
0207 8DOBOI STA $10B
020A 4C82E1 JMP OCMIN
020D B07A START BCS SECND
020F A925 FIRSTM IDA #$25 •SET TRAKEMISSICN SPEH) FOR TTY
0211 8D17A4 STA $A417
0214 A900 U3A *$00
0216 8D18M STA 5M 18
0219 2024EA JSR CROC
021C A203 U K /WANT ;WANT PAGING?
021E A092 LDY fHANT
0220 2QPC02 JSR PRINT
0223 2083FE JSR CUREAD
0226 8D5303 STA PAGING
0229 C959 CMP 'Y
022B D065 ENE TCREf
022D 2024EA JSR CHCK

0230 A901 U A *$01 ; INITIALIZE PAGE CXXHT AND LINE NOCER
0232 8D5203 sta L m a rr
0235 8D5003 STA PGCNT
0238 A900 im *$oo
023A 8D5103 STA PQQm-1

023D A203 U K /T H U S ;GET PAGE TITIZ
023F A0A5 U K *TTH£S
0241 20PC02 JSR PMHT
0244 2024EA JSR CRCK
0247 A200 U K *$00
0249 2063FE TTUN JSR CUREAD
024C C97F CMP *$7F ‘CH2IE7
024E DOOB ENE C8ARIN
0250 EOOO CPX *$00
0252 P0F5 BEQ TTUN

0254 CA EEX f BACK UP POINTER

0255 20CCE7 JSR PS1S .■BACK UP DISPLAY
0256 4C4902 JMP TTUN

025B C90D CHARM CMP *$0D
025D FOOB BEQ n U N D
025F 2076E9 JSR RED2
0262 9D5503 STA T m z .x
0265 E8 INX

0266 E030 CPX *$30 ;IS BUFFER EUli (60 CHARS)?
0266 DODF ENE T H IN

026A A93B TTUMD LDA *$3B ; STORE ' ; ' TO BIS) T IH Z

026C 9D5503 STA TITLE,X

026F .■TIM OUTTVT ROUTINE

026F 209202 T H jOUT JSR TCRLF

0272 209202 JSR TCRLF

0275 2QEF02 JSR UME
0278 A203 U K /TITLE

027A A055 U K *TTHJE
027C 200003 j s r m u m
027F 20B302 JSR PGKJM

0282 A902 LDA *$02
02B4 8D5203 STA. LDKDT
0287 D009 ENE TCRU’

(Continued)

A TTY Output Handler

The program presented in listing 1 is
a short user output handler which
replaces the AIM OUTPUT subroutine
to allow TTY output while retaining in­
put from the AIM keyboard. This pro­
gram tests the carry bit to determine if
this is the first entry to this routine. The
first entry usually occurs with execution
of the monitor WHEREO ($E871)
subroutine, which clears the carry bit
upon first entry to a user output handler.
If the carry is clear (first entry), the baud
rate ($A417) and delay ($A418) are
initialized and an RTS (Return from
Subroutine) is executed. I found that the
parameters suggested by Rockwell (page
9-31 of the user’s guide) did not work
well with my printer; the values I used
were determined by trial and error.

For subsequent entry, the carry bit
should be set prior to jumping to this
program, as is done by the monitor
OUTALL routine. OUTALL places the
character to be output onto the stack, so
this character is pulled into the accum­
ulator upon subroutine entry. If the
character is a carriage return |$0D), it is
sent to the TTY and is followed by a
linefeed ($0A). Otherwise, the character
is output to the TTY, using the monitor
OUTTTY routine |$EEA8), and an RTS
instruction is executed.

Output is directed to the TTY
printer by loading the start address of
this program (here $0200) into the vec­
tor to the user output handler (UOUT =
$010A, $010B) and specifying " U " as
the output device. This can be used with
any of the AIM routines which permit a
selection of the output device.

PRINTER BONUS

Providing Page Titles and Numbers

A fancier output handler is presented
in listing 2. This program requires more
memory, but is easier to use (it loads the
start address into UOUT) and provides
for optional page headings and page
numbers.

To use this program, first run the
program at $0200 to enter the routine
start address into UOUT. Output can
then be directed to the TTY from the
AIM monitor, from the Text Editor, or
from the Assembler (but not from the
AIM disassembler) by specifying "U" as
the output device. The message
"WANT PAGING (Y/N)?” will be
displayed, to which a response of "N "
will result in unformatted (no paging)
Output to the TTY. A response of “Y" is
followed by the message1 'ENTER PAGE

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 37

TITLE:" The user can then enter a title
of up to 60 characters, terminated by a
carriage return, which will be output as
a header on each page of output, along
with the page number.

The program listings presented in
this article were prepared on my TTY
printer using this program.

Directing Disassembled Output
to the TTY

As noted above, the programs in
listings 1 and 2 may be used by the AIM
monitor, the Text Editor, or the
Assembler. The AIM disassembler,
however, sends output to the AIM
printer without an optional output
device. Since I often save disassembled
listings as part of my program documen­
tation, I also wanted the capability of
directing the output of the disassembler
to my TTY printer. Listing 3 presents a
program which provides this ability.

This program is very similar to the
AIM disassembler, but it has OUTFLG
set to “U " to permit TTY output, and
has calls to the monitor routine CRCK
($EA24) changed to CRLF ($E9F0).
Using CRLF allows sending carriage
return characters to the TTY printer
while retaining AIM keyboard input.
Run this program (* = $8D00) and re­
spond to the prompts as for the AIM
disassembler. Output is directed to the
T TY printer.

With these programs my TTY
printer is a useful addition to my AIM 65
system.

Larry P. Gonzales is an Assistant Professor
of Physiology and Biophysics at the
University of Illinois Medical Center. He
has 12 years experience programming in
high level languages and several years in
the use of minicomputers for real-time
data acquisition and signal analysis.
During the last two years he has been
developing a system using an AIM 65 in
the collection and analysis of
electrophysiological data.

JMCRO

0289

0289

0289 68

02BA C90D

028C P004

02BE 20A8EE

0291 60

0292 M OD
0294 20A8EE
0297 A9QA

0299 20A8EE
029C AD5303

029F C959
02A1 DOOF
02A3 A900

02A5 8D4F03

02A8 EE5203

02AB AD5203

02AE C93F
02B0 F0BD
02B2 60

02B3
02B3 AD4F03

02B6 C93F
02B8 FOCSA

02BA A920

02BC 20ABEE
02BF EE4F03

02C2 10EF

02C4 A203

02C6 A0B8

02C8 200003
02CB AD5103
02CE 203703

02D1 AD5003
02D4 203703
02D7 209202

02DA F8
02DB 18
02DC A901

02EE 6D5003

02E1 8D5003

02E4 DOOB

02E6 A900
02E8 6D5103

02EB 8D5103

02EE D6

02EP

02EF A249
02F1 A92D
02F3 20A8EE

02F6 CA
02F7 DOFA

02F9 4C9202

02PC
02FC A9FF

02FE D002

0300 A900

0302 8D5403
0305 A500

0307 48
0308 A501
030A 48
030B 8601
030D 8400
030F AE5403

0312 AOOO

0314 B100
0316 C93B

0318 D009

031A 68

031B 8501

031D 68

031E 8500

0320 4C9102

0323 EOOO

0325 F006
0327 207AE9
032A 4C3003

032D 2QA8EE

0330 C8

0331 EE4F03

0334 4C1403

Listing 2

;SBCtUD t SUBSKXJQTT QHTCf TO TTOOT
;AOC WAS HJEHED IN OUTAIA
SBCND PLA

CMP #$0D
BBQ T C R If
JSR oorm
RTS

UXV #$0D
JSR OOTTIY
L » #$QA
JSR O W TIY
U A PAGING
a*> 'Y

TCFLF ;CR AND LF TO TTY PRDflER

;UPDATE 2-BYIE DECIMAL PAGE COUNTER

LCA #$00

STA PRTPOS

INC UNCUT
LEA LHJCNT

CMP #$3F

BBQ TH£UT
RT59J RTS
; 0 » n w PAGE NUMBER TO TTY PRINTER
PGNUM U A PR'H’OS

CMP *$3F
BBQ PGOUT

UK #$20
jsr o o r m
INC PRTPOS

BPL PGNUM

PGOOT U K /PAGES
U Y #PAGES

JSR iraiNT

U K PGC8T4-1
JSR THXDUT

LDA PGCNT
JSR THXDOT
JSR T C K f

SO)

a x
UK #$01
ADC PGCNT

STA PGCNT
ENE CLEAR

U » #$00
ADC PGCOT+1
STA PGCNT+1

CLEAR CLD
; OUTPUT LINE TO TTY PRINTER

T.TME U K #$49
U A #$2D

PRNT JSR OUl'l'lY
EEX

ENE PRNT

JMP TCKIF
(PRINT MESG OR T I M TO DISP/PR OR TO TCY PRINTER

PRINT U R #$FF
ENE TPRIN2

TPRINT U A #$00
1PRIN2 STA PEXAG

U A PRTADR

PHA

IDA PRTODR+l
PHA
STX PRJADR+1

STY PRTADR
U K PFIAG

umr #$00
PRIOT3 U A (PRTADR) ,Y

CMP
ENE CHROUT

PIA

SIR PRTADRfl
PLA

STA PRTADR
JMP RETWI

CHROUT CPX #$00
BBQ TTY
JSR OtHtOT

JMP INCR
TTY JSR OUTTTY

INCH H W
INC PRTPOS

JMP PRINT3

• SAVE ZERO PAGE DATA

;DCNE?

; RESTORE ZERO PAGE DATA

(Continued)

38 MICRO - The 6502/6809 Journal No. 39 - August 1981

PRINTER BONUS

Listing 2

0337 48 1HXDUT PHA

0338 4A LSR

0339 4A LSR
033A 4A I£R

033B 4A LSR

033C 204203 JSR CNVRT
033F 68 PIA

0340 290F AND #$0F

0342 18 CNVRT CLC
0343 6930 ADC #530

0345 C93A CMP #53A

0347 9002 BCC CHRPRT

0349 6906 ACC #$06

034B 20A8EE CHRPRT JSR OU ITB

034E 60 END RTS

HMD

Listing 3
;* DISASSEMBLIES TO TTf

;* BY LARRY P. GCHZALZZ

jREFLSOB CRCK IN AIM'S D ISA SSE «at WI1H CRtf

OCMQJ EQU $E182 ;MCKITOR EWIW

CGP00 BQU $E5D7 .•ALTER PROGRAM 00UJTER

GCSTT ECU $E785 ;GET tO C B t OF LU ES
DCME BQD $E790 ;CBCX OdORT
PSL1 EQU $E837 ;PRIOT •/ •

RCBBC EQU $E907 ;CSBCX FOR STOP CCMMM1D

0OTTOT BQU $E97A jOUIPUT TO TTY OR TO D/P
O S f BQU $E9F0 .■OUTPUT CK AID I f

ADDIN EQU $EAAE ;GET FOUR EH1E NXSESS
OUTTTY BQU $EEM .•OUTPUT O K CHARACTSB TO TTY
DISASM BQU $F46C ; d i s a s s b c u on e rasirocncK

OBG $8DOO
8D00 A95C U A *UCXJT .'INITIALIZE JUMP TO USER OUTPUT HNEXER
8D02 8DQA01 OTA $10A
8D05 A98D U A /UOUT
8D07 8D0B01 s m $106
SDOA A925 U A #$25 ;SET TTHN9IISSICN SPEH3
8D0C 8D17M STA $A417
8D0F A900 U A #$00
8D11 8D18A4 STA $A418
8D14 AD13M U A $A413 .'SAVE OUTTTjG
8D1T48 PHA
8DI8 A955 U A 'U SSET CXJISUG»"U"
8D1A 8D13A4 STA $A413
8D1D A92A KDISA U A # $ 2 A ;® T START ADDRESS
8D1F 207AE9 JSR CUIWT
8D22 2CAEEA JSR ADDIN
8025 B0F6 BCS KDISA
8D27 20D7E5 JSR OGPCO
8D2A 2037E8 JSR PSL1
8D2D 2085E7 JSR GCNT ;gbt a u n - O F n e T O m o B
8D30 20F0E9 JSR CRtf
8D33 4C3E8D JMP JIB
8D36 2007E9 JDA JSR RCHBC
8D39 2090E7 JSR DCNE ;ARE HE DCHE7
8D3C F017 BB3 JED
8D3E 206CF4 JEB JSR DISASM ;G0 TO DISASSEMBLE
8D41 AD25A4 liA $A425 ; UPDATE PROGRAM COWISt
8D44 38 SEC
8D45 651% ADC $EA
8D47 &D25A4 STA $A425
8D4A 9003 BCC JDC
8D4C EE26A4 INC $A426

8D4F 2OF0E9 JDC JSR CRtf
8D52 4C368D JMP JDA
8D55 68 JID PIA ;RESTC*E OUIFLC
8D56 8D13A4 STA $M 13

8D59 4C82E1 JMP CCMIN ;KETORH TO MaHTCR

8D5C ;TTY CHOTUT HANCl£R

8D5C 68 U0C7T PIA

8D5D C90D CMP *$CD

8D5F D005 ENE COT

8E61 2QA8EE TCRLF JSR OUTTTY

8D64 A90A U A #$QA
8D66 20A8EE OUT JSR OUTTTY

8D69 60 BSD RTS

iu
3 a!

i u w

o s .a. o
I " £

c/> £
O fc
ss

* 111
L C 3
r " <

to =
U i o

C O - *

u.
LU
X

co a
O E
u. oo
o •*-o
c
O CO
» £
$ ©
* 5
TJ *° ©*o ©C J=a) *■*
2 co ® ©

" I
p O

i °
*" Q
_ iuIs
I I> o0 —.
a e

0 9C
CO
CD©O

s i
2 oE t

JO <D
H CL
ia a

s
t3
<U

CM CO
(D L,

©eo
Ul
Z

I §•| E
■s S
J ? f

■o e
s i

E«■o
oo

O
X
zo

o
& .
o

.c

.2

on

©a.Q.
z>

-b J

x<0
E

o
CO

a
a0 ^

co “to
CQ c
CD Os •
1 2
& ®> & is » •2 .®■S 5
a>
6
V
H
*35
o

T *

U l
>
LU

X
g

x
COc
CC

•Q
CO

&o
o>.c
e
E
5O)O

Oa.
o> S
£ £
CD 9 *
O 5
u.

c
S -2
t 3
o o X «
" 2
Jjo> ,o>

-c
< O — 0) i- 13 O ̂« £ n -X ' x <u

m

< T3
2 ^ S » ‘
cc -5
0 - ^ ;>

5 r -

*oq>0}c
t.3O>.

©D)2
k.X
o2
CD
o
0>00

CL
>s

Q)
0)Oo 73 ©Q) wQ. *-<0 oy CD
S i *5 "S. ir3 ^ - 0< a: cc

*>oo
Q)
a
Eoo
■wo
CDQ.
Eoo
Sk

oc
Q> CO

e 3c a>
2 o,
® -SO) to«o
O) + c =
CD ^

1 5
I ac <
« 00 « ^

S C0

Q- CO Ao S
X X
Ui Ul

3cr0)cc

* * * * * * * *

No. 3 9 -August 1981 MICRO - Th© 6502/6809 Journal 39

A $200 Printer
for C1P & Superboard

Hardware modifications are
presented to Interface the C1P
to a Radio Shack Quick Printer
II. Software considerations are
discussed and demonstration
programs are Included.

Louis A. Beer
P.O. Box 705
Portola, California 96122

If you write programs, a near must for
your computer is a printer. The Radio
Shack Quick Printer II is relatively fast
(32-character 120 lines per minute),
reliable, quiet, and inexpensive (approx­
imately $200). It is easy to interface to
the Ohio Scientific C1P or Superboard.
This article explains how.

There are three problems to handle,
and all are quite easily overcome:

1. The Quick Printer operates at 600
baud. The C1P normally operates at 300
baud.

2. The Quick Printer sends a +5
volt signal on the CTS (clear-to-send)
line to indicate it is ready to receive
data, and - 6.2 volts to indicate not
ready. The C1P serial interface (ACIA,
U-24 on the OSI schematic) takes +5
volts on its CTS line to inhibit sending
data, and ground potential on this line to
enable sending data.

3. The C1P character output pro­
gram in ROM outputs ten nulls at the
beginning of each print line. The Quick
Printer does not recognize nulls ($00),
and therefore locks up and sends a 'not
clear-to-send' signal when these are
encountered. Some previous fixes for
solving this problem have merely elim­
inated the nulls, but this makes reliable
saving on tape impossible once the fix is
in memory. The loss of the ten nulls at
the beginning of each line causes reading
errors when reading the tape back. My
system eliminates this problem by
substituting the ASCII 'SOH' (start of

heading) for the nulls. The Quick
Printer recognizes this character,
discards it, and waits for a printable
character. The C1P treats it as a null.

Let's take these problems in "order
and give the solutions. First, to make
the C1P switchable for 300 or 600 baud,
locate pin 2 of U57 and cut the trace
|which goes to pin 14 of U59) so that it
can be switched to either pin 14 of U59
for normal 300 baud operation, or pin 11
of U30 for 600 baud operation. One half
of a double-pole double-throw switch is
used. (See wiring diagram.)

Second, to make the CTS (clear-to-
send) switchable between normal C1P
operation and Quick Printer operation,
again refer to wiring diagram. Cut the
trace at W3 (on the C1PJ from pin 24 of
U24 (ACIA) to ground. Use the other
half of the double-pole double-throw
switch to switch the CTS line (pin 24)
between ground (normal, 300 baud,
printer-off) and emitter of an audio tran­
sistor, which will effectively provide
ground for 'clear-to-send' and + 5 volts
for 'not clear-to-send' signals being
received from the printer.

Figure 1: C1P Modifications to Operate Quick Printer II

QUICK PRINTER

40 MICRO - The 6502/6809 Journal No. 39 - August 1981

I soldered the transistor collector
directly to the + 5-volt bus on the C1P,
and the emitter through the IK ohm
W-watt resistor to the ground bus so
that it is mechanically self-supporting.
Any 3-wire connector can be used to
connect the cable from the Quick
Printer. I used a couple of RCA jacks.
The RS-232 (out) port on the C1P must
be populated per the diagram in the
user's manual if you have not already
done so. This takes four resistors and
one PNP transistor and is rather easy to
do. The schematic is in the user's
manual and labelled "sheet 6 of 13.''
Only R72, R63, R64, R65 and Q1 are
required. Any PNP audio transistor will
do for Q l.

Third, the 8-line program given here
will take care of the null problem. The
BASIC support for outputting characters
is in ROM $FF69 to $FF95 (65385 to
65429 dec). What we will do is lift this
entire routine and put it in unused
RAM, then replace the null at $FF80
with the SOH ($10). We do this by
reading these 44 bytes and POKEing
them into unused RAM starting at
$0222 (546 dec). This is all done by lines
2 and 8 . Lines 3, 4, 6 and 7 set the out­
put vector and warm start pointers so
that any output will use the routine
starting at $0222 rather than the one in

ROM $FF69. To set up your machine,
LOAD this program, then RUN. It takes
about a second to run. Next, hit BREAK
and W (warm start) and you are in
business.

You should next clear this BASIC
program by typing NEW and hitting
RETURN, or (in case you have another
BASIC program already in memory and
don't want to lose it) by typing 1
through 8 with RETURN to eliminate
each line. The reason for clearing the
program is that the DATA statements
can confuse another program using
DATA statements. Warm start will con­
tinue to work, but after any cold start
the program will have to be loaded and
run again to use the printer.

Here is the general operating pro­
cedure: when you want to list a program
in the computer on the printer, start
with the switch you installed in the nor­
mal (300 baud, no print) position. Type
SAVE, hit RETURN, type LIST (and line
numbers to be listed, if desired). Now
turn on the printer mainline switch and
put its PRINT switch to the on-line (up)
position. The printer INPUT SELECT
switch should always be in SERIAL
(down) position. The printer will now
print ‘‘PRINTER READY.” Now put the

double-pole switch you installed in the
600 baud/print position. Hit RETURN,
and out comes your program listing.
You can have die printer ''on-line''
when running a program which has
printed output (a disassembler, for ex­
ample) but watch out for excessive use
of paper by PRINT statements used for
screen clearing, etc.

1 REM:QUICK PRINTER FIX BY
LOU BEER
2 M = 546.FORN = 65385TO
65429: P = PEEK(N):POKEM,P
:M = M +1 :NEXTN
3 DATA169,34,141,26,2,169,2,
141,27,2,76,116,162
4 DATA76.216.0
6 FORN =216T0228:READP:
POKEN,P:NEXTN
7 FORN =0TO2:READP:POKEN,
P-.NEXTN
8 POKE569,16:END
OK

The whole modification is simpler
than it sounds. If you have any problems
in getting it to work, I will be glad to
assist if you send a S.A.S.E.

JMCftO

75.00
20.00

45.00
65.00

14.95
99.95

ZFORTH IN ROM by Tom Zimmer
5 to 10 times faster than Basic. Once you use it, you'll never go back to BASIC! $
source listing add *
OSI FIG-FORTH True fig FORTH model for 0S65D with fig editor named files, string $ 45.00
package & much more
TINY PASCAL Operates in fig-FORTH, an exceptional value when purchased with forth.
TINY PASCAL & documentation $
FORTH & Ti N Y PASCAL *
SPACE INVADERS 100% machine code for all systems with 64 chr. video. Full color & sound
on C2,4P&8P systems. The fastest arcade program available. $
PROGRAMMABLE CHARACTER GENERATOR $
Use OSI’s graphics or make a complete set of your own! Easy to use, comes assembled & tested.
2 Mhz. boards $109.95
PROGRAMMABLE SOUND BOARD $ ^ .95
Complete sound system featuring the AY-3-8910 sound chip. Bare boards available. *29.95
32/64 CHARACTER VIDEO MODIFICATION . , $39.95
Oldest and most popular video mod. True 32 chr. C1P, or 32/64 chr. C4P video display.
Also adds many other options.
ROMS!!!
Augment Video Mod with our Roms. Full screen editing, print at selectable scroll, disk support and many more
features. Basic 4 & Monitor *
Basic3 *1 | .9 5
All 3 for * 6500
65D DISASSEMBLY MANUAL, by Software Consultants. First Class throughout.
A must for any 65D user. * 24 95
NUMEROUS BASIC PROGRAMS, UTILITY PROGRAMS AND GAMES ALONG WITH HARDWARE PROJECTS. ALL
PRICES ARE U S FUNDS. Send for our $1.50 catalogue with free program (hardcopy) Memory Map and Auto Load
Routine.

OSI Software & Hardware
3336 Avondale Court
Windsor, Ontario, Canada N9E 1X6
(519) 969*2500
3281 Countryside Circle
Pontiac Township, Michigan 48057
(313) 373*0468

No. 39 - August 1981 MICRO - The 6502/6809 Journal 41

C1P to Epson MX-80
Printer Interface

A circuit Is presented to
Interface the C1P to the popular
Epson MX-80 printer.

Gary IE. Wolf
227 Grove Street
Clifton, New Jersey 07013

There have been several articles written
on interfacing the C1P with a printer,
but it seems that each, printer needs its.
own instructions. The Epson MX-80 is
no exception.

Other sources have detailed the in­
stallation of the RS-232C, and figure 1
shows the schematic. By cutting the
W10 trace, a negative 9 VDC can be
applied at this point, via J3 pin 7 . 1 used
a sim ple transistor radio battery
e lim in a to r for th is . Im p ortan t:
remember correct polarity. Positive on
this source is ground.

Next, cut the trace that connects the
ACIA |U14) pin 24 to ground. (See figure
2.) Solder a jumper from pin 24 to the
CTS trace. Then mount a SP2T (single
pole double throw) switch somewhere
on the computer enclosure to put
ground back on pin 24 when you use a
cassette. The cassette won’t operate
properly if this pin is floating.

I mounted a DB-25 connector in the
rear of my cabinet. Since only three pins
will be used, almost any connector will
do. Solder the cross connections be­
tween the DB-25 and a Molex connec­
tor, which fits into J3 on your computer
board. (See figure.4.) Now to the printer.

I assume you have bought the MX
series option for your printer, since it
will not interface to a C1P without one.
If the board has been installed, you may

+ 5VDC Figure 1

Figure 2

42 MICRO - The 6502/6809 Journal No. 39 - August 1981

be ready to plug in the cable and be off
and running, but don't count on it! Go
to the series option manual and follow
the instructions for removal of the
printer cover. Check the settings on DIP
switch 8141. See table 2 on page 4 of
your manual. Settings should agree with
table 1 (shown here).

Table 1 Setting of DIP SW (8141)

Pin Setting for 300 B.P.S.

1 Off
2 Off
3 On
4 On
5 N/A
6 Off
7 Off
8 N/A

The board comes from the factory
with jumper JNOR connected. It should
be cut and jumper JREV should be in­
stalled. This adds another inverter to the
output at pin 11.

Pin 11 ultimately connects to the
CTS lead at your computer. This is the
handshake. A high signal on CTS in­
hibits ACIA output. With JREV on and
JNOR off the C1P will send out data on­
ly when the printer is ready for it. Note
also that ground from the computer is
connected to pin 7 of the printer, not pin
1. They are not the same.

I have included a simple address and
label program to get you started. The
Epson MX-80 is a great printer, and
although there are a few spots in the
manuals that are confusing, most of the
information is clear and helpful. With
these tips you should have no problem
with the interface. „JMCftO

Figure 3

EDIT 6502 T.M. LJK

Pass Assembler, Disassembler, and Editor Single Load Program
DOS 33., 40/80 Columns, for Apple II or Apple II Plus*

A MUST FOR THE MACHINE LANGUAGE PROGRAMMER. Edit 6502* is a two pass Assem­
bler, Disassembler and text editor for the Apple computer. It is a single load program
that only occupies 7K of memory. You can move freely between assembling and disas­
sembling. Editing is both character and line orientated, the two pass disassemblies
create editable source files. The program is so written so as to encompass combined
disassemblies of 6502 Code. ASCII text, hex data and Sweet 16 code. Edit 6502 makes the
user feel he has never left the environment of basic. It encompasses a large number of
pseudo opcodes, allows linked assemblies, software stacking (single and multiple
page) and complete control of printer (paganation and tab setting). User is free to
move source, object and symbol table anywhere in memory. Requirements: 48K of
RAM, and ONE DISK DRIVE. Optional use of 80 column M&R board, or lower case availa­
ble with Paymar Lower Case Generator.

TAKE A LOOK AT JUST SOME OF THE EDITING COMMAND FEATURES. Insert at line » n Delete a character
Insert a character Delete a line H n List line #nl, n2 to line # n3 Change line # nl to n2 "stringl” Search
line ft nl to n2 “ stringl"

U K Enterprises Inc. P.O. Box 10827 St. Louis, MO 63129 (314)848-8124
•Edit 6502 T.M. i f LJK EnL Inc. — ‘Apple T.M. al Apple Computer Inc.

LODK AT THESE KEY BOARD FUNCTIONS: Copy to the end of line and
exit: Go to the beginning of the line: abort operation: delete a
character at cursor location: go to end of line, find character
after cursor location: non destructive backspace: insert a
character at cursor location: shift lock: shift release: forward
copy: delete line number: prefix special print characters. Com­
plete cursor control: home and clear, right, left down up. Scroll a
line at a time. Never type > line number again.

All this and much much more — Send for FHEE Information.

Introductory Price $50.00.

y isCOMPUTE# BASED SOFTWARE

No. 39 - August 1981 MICRO - The 6502/6809 Journal 43

Utilities for the
Paper Tiger 460

Here are two utilities for the
Paper Tiger 460 printer for use
with the Apple II. The Applesoft
BASIC program lets you set all
the programmable features of
the Paper Tiger by choosing
from a menu. The machine
language program dumps the
Apple Hi-Res graphics screen
buffer to the printer.

Terry L. Anderson
Dept, of Physics & Computer Science
Walla Walla College
College Place, Washington 99324

The Paper Tiger 460 is an exciting addi­
tion to the group of printers available to
the personal computer user. This dot
matrix printer uses paper up to 10.5
inches wide and prints at a mode-
dependent speed of up to 150 characters
per second. It has a graphic option with
84 dots to the inch resolution (both ver­
tical and horizontal). This is nearly dou­
ble the resolution of most other printers
with dot graphic modes. But the most
unique feature is the use of overlapping
dots. Most printers use a single row of
print head wires allowing dots that near­
ly touch but cannot overlap. The 460
uses two side-by-side rows of four and
five wires, respectively, which are stag­
gered so that the resulting dots overlap
about 30%. Thus a vertical line such as
is used to print an 'L' or an 'I' is solid
without distinct dots and has very little
raggedness. The result is type quality
nearly as good as fully-formed character
printers such as Diablo and IBM Selec-
tric, and adequate for many word pro­
cessing applications.

The overlapping dots also allow solid
black areas in graphics. With non­
overlapping dot graphic printers, four
dots in a square pattern leave a little
white in the center of the pattern. This
results in a slightly gray effect. But the
overlapping dots of the 460 filling in the

center of a four-dot square pattern com­
pletely, result in very solid blacks. This
is important if you want to use the
printer to construct bar code patterns for
use with readers such as the new
H EDS-3000 bar code wand from
Hewlett-Packard. Areas of white in the
middle of a bar can result in false
readings. The Paper Tiger 460 should be
very useful as a bar code printer, which
is one of my next projects.

The high resolution of the 460's
printing allows more options than most
dot matrix printers have. These options
include six character sizes, variable ver­
tical line spacing, fractional line spacing
up and down for sub- and super-scripts,
and fully right- and left-justified text
using variable character spacing, not just
extra spaces between words. The firm­
ware allows all of these features to be
used under program control. This
results in a great deal of flexibility, such
as mixing type sizes on one line, and
sub- and su per­
scripts. But choosing
a feature requires
sending special con­
trol characters, even
if one feature is to be
used for an entire
print job. Some of
these are hard to
remember and some
are difficult to send
from the Apple key­
boards, which can­
not generate all 128
ASCII characters.
Several im portant
functions on the 460
require characters
not available on Apple's keyboard. The
one that enables auto-justification
(control-D) conflicts with Apple's DOS
use of that character, so some can only
be sent using a program.

Tiger Setup

To make configuring the Paper Tiger
460 easy we need a configuring program.
The first program, TIGER SETUP,

allows you to choose the features you
want from a menu. This reminds you
which features are available and you
don't have to remember all the special
characters. When you exit with 'Q ' (for
quit) all the special characters to pro­
gram the printer are sent.

The menu shows the options with
the currently-selected value indicated
by inverse video. Many selections are
made with a single keystroke to toggle
the state of the printer, such as between
auto-justify mode and normal, or be­
tween six and eight lines per inch. The
key is indicated by inverse video. Some
selections require a single keystroke
followed by a value for a parameter. The
single keystroke will place the cursor
just in front of the old value and allow a
new value to be typed over the old.
Choosing length of a form is an exam­
ple. A few selections require two
keystrokes; one to choose the category
and the second a subcategory, such as

horizontal or vertical for tabs, and right
or left for margins. After the first
keystroke the cursor is moved in front of
the secondary choices to indicate the re­
quired action. After the second key­
stroke the value is entered. If, at any
time, an invalid keystroke is entered the
program simply returns to the main'
menu cursor location. In the case of
tabs, up to eight tab locations can be
entered, separated by commas.

44 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

Listing 1

1 0
1 2 R E M *
1 4 R E M « T I G E R S E T U P
1 6 R E M *
1 8 R E M * B Y
2 0 R E M *
2 2 R E M * T E R R Y L A N D E R S O N
2 4 R E M *
2 6 R E M * W A L L A W A L L A C O L L E G E
2 8 R E M *
3 0 R E M * B E G U N 1 9 8 1 F E B 0 3
3 2 R E M * L A S T MOD 1 9 6 1 F E B 1 9
3 4 R E M *
3 6 R E M * M E N U D R I V E N P R O G T O
3 8 R E M * C O N F I G U R E P A P E R
4 0 R E M * T I G E R 4 6 0 F E A T U R E S
4 2 R E M *
4 4 R E M * C H A N G E L I N E 1 1 0 T O
4 6 R E M * P R I N T E R S L O T #
4 8 R E M *
3 0
9 9 R E M
1 0 0 R E M

I N I T I A L I Z E
1 1 0 S L » 1 R E M P R I N T E R S L O T #
1 2 0 T S « " T I G E R S E T U P "
1 3 0 V S - " V E R 8 1 —F E B —1 9 "
1 4 0 D S = C H R S (4) : R E M C T R L - D
1 3 0 E S = C H R S (2 7) : R E M < E S C >
1 6 0 N S * " , " + C H R S (0) : R E M 1

I N C F O R E S C F U N C ' S
1 7 0 F L * » 5 2 6
1 8 0 P S * = 4 8
1 9 0 A L * « 8 : A G * * 4 : A O * - - 4
2 0 0 V T S *

V T S
" 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 " : H T !

2 1 0 R E M
M E N U

2 2 0 H O ME V T A B 1 : H T A B 2 0 -
(T S) / 2 : P R I N T T S

2 3 0 V T A E 3 : H T A B 2 0 - L E N (V!
2 : P R I N T V S

2 4 0 V T A B 5
2 3 0 I N V E R S E P R I N T " G " ; : N O R M A L

: P R I N T " R A P H I C M O D E " ;
2 6 0 I F G * T H E N P R I N T " O F F / ” ; : I N V E R S E

P R I N T " O N " : N O R M A L : G O T O 2 8 0
2 7 0 I N V E R S E P R I N T " O F F ' * j : N O R M A L

P R I N T “ / O N "
2 8 0 I N V E R S E P R I N T " J " ; : N O R M A L

P R I N T " U S T I F Y M O D E M ;
2 9 0 I F J * T H E N P R I N T " O F F / ” ; : I N V E R S E

P R I N T " O N " : N O R M A L : G O T O 3 1 0
3 0 0 I N V E R S E P R I N T • • O F F " N O R M A L

P R I N T " / O N "
3 1 0 I N V E R S E : P R I N T " P " ; : N O R M A L

P R I N T " R O P O R T I O N A L S P A C I N G

3 2 0 I F * P * T H E N P R I N T " O F F / " ; : I N V E R S E
: P R I N T " O N ' 1 : N O R M A L : G O T O 3 4 0

3 3 0 I N V E R S E P R I N T " O F F ” ; : N O R M A L
P R I N T " / O K "

3 4 0 I N V E R S E P R I N T ML " ; : N O R M A L
P R I N T " I K E S P A C I N G

3 3 0 I F A L * - 6 T H E N P R I N T " 6 / " ;
I N V E R S E P R I N T " 8 " ; : N O R M A L

: P R I N T " L P I " : G O T O 3 8 0
3 6 0 I F A L * « 8 T H E N I N V E R S E : P R I N T

" 6 " ; : N O R M A L : P R I N T • ' / 8 L P I
" : G O T O 3 8 0

3 7 0 P R I N T " 6 / 8 L P I I N V E R S E
P R I N T " S P E C I A L S E E A D V L F " :
N O R M A L

3 8 0 I N V E R S E P R I N T " A " ; : N O R M A L
P R I N T " D V A N C E I N V E R S E
P R I N T " L " ; : N O R M A L P R I N T

" F : I N V E R S E P R I N T A L % ; :
N O R M A L P R I N T " /

4 8 T H I N C H "
3 9 0 H T A B 1 0 : I N V E R S E P R I N T " G "

; : N O R M A L P R I N T " R A P H I C L F
I N V E R S E P R I N T A G * : N O R M A L

4 0 0 H T A B 1 0 : I N V E R S E P R I N T " O "
; : N O R M A L P R I N T " T H E R M ; : I N V E R S

E P R I N T A O * : N O R M A L
4 1 0 I N V E R S E P R I N T " C M ; : N O R M A L

P R I N T " H A R S P A C I N G M ;
4 2 0 I F C * « 0 T H E N C * • 4
4 3 0 I F C * « 1 T H E N I N V E R S E P R I N T

“ 3 " ; : N O R M A L P R I N T " , 6 , 8 . 4
, 1 0 , 1 2 , 1 6 . 8 " ; : G O T O 4 9 0

4 4 0 I F C * » 2 T H E N P R I N T " 5 , " ; :
I N V E R S E : P R I N T " 6 " ; : N O R M A L

P R I N T " , 8 . 4 , 1 0 , 1 2 , 1 6 . 8 " ; : G O T O
4 9 0

4 3 0 I F C * « 3 T H E N P R I N T " 3 , 6 , "
; : I N V E R S E P R I N T " 8 . 4 " ; : N O R M A L

P R I N T " , 1 0 , 1 2 , 1 6 . 8 " ; : G O T O
4 9 0

4 6 0

4 7 0

4 9 0
3 0 0

3 1 0

3 2 0

I F C * * 4 T H E N P R I N T " 5 , 6 , 8
. 4 , " ; : I N V E R S E P R I N T " 1 0 " ;
: N O R M A L P R I N T " , 1 2 , 1 6 . 8 " ;

G O T O 4 9 0
I F C * - 3 T H E N P R I N T " 3 , 6 , 8
. 4 , 1 0 , " ; : I N V E R S E P R I N T " 1
2 “ ; : N O R M A L P R I N T " , 1 6 . 8 " ;
: G O T O 4 9 0
I F C * - 6 T H E N P R I N T " 3 , 6 , 8
. 4 , 1 0 , 1 2 , " ; : I N V E R S E P R I N T
" 1 6 . 8 * ' ; : N O R M A L G O T O 4 9 0
P R I N T " C P I "
I N V E R S E P R I N T " I " ; : N O R M A L

P R I N T " N T E R C H A R S P A C I N G M ;
I N V E R S E P R I N T I S % ; : N O R M A L
P R I N T " / 2 4 T H C H A R W I D T H "

I N V E R S E P R I N T " M " ; : N O R M A L
P R I N T " A R G I N " ; : I N V E R S E

" L " ; : N O R M A L P R I N T
I N V E R S E : P R I N T ML

P R I N T " / 1 2 0 T H

P R I N T
» e f t
* ; : N O R M A L

I N C H *
H T A B 9 : I N V E R S E

N O R M A L : P R I N T

5 3 0
P R I N T M R * :

P R I N T
' I G H T " I N V E R S E

N O R M A L
P R I N T " F " ; :

" O R M S L E N G T H 1
F L * ; : N O R M A L
I N C H < * “ ; F L %

N O R M A L
; : I N V E R S E

P R I N T
/ 4 8 ; * ’

P R I N T " S " ; : N O R M A L
I Z E P A G E S K I P " ; : I N V E R S E

N O R M A L P R I N T " / 4
(« " ; P S * / 4 8 ; " I N C

5 3 0

3 6 0

3 7 0

5 8 0
3 9 0

6 0 0
610

I N V E R S E
: P R I N T

P R I N T
“ / 4 8 T H

I N C H) "
I N V E R S E
: P R I N T

P R I N T P S * ;
8 T H I N C H
H > "
I N V E R S E P R I N T " T " ; : N O R M A L

P R I N T " A B S I N V E R S E P R I N T
" H " ; : N O R M A L : P R I N T " O R I Z "
; : I N V E R S E P R I N T H T $; : N O R M A L

P R I N T " / 1 2 0 T H I N C H "
H T A B 7 : I N V E R S E P R I N T "
: N O R M A L : P R I N T " E R T " j

P R I N T V T S ; : N O R M A L P R I N T
8 T H I N C H "
P R I N T : I N V E R S E P R I N T '
: N O R M A L P R I N T ” U 1 T A ND
N F I G U R E P R I N T E R "
P R I N T : P R I N T " S E T : M ;
P O K E 4 9 1 6 8 , 0 : R E M C L R
O B E
G E T A S
R E M

I N V E R S E
/ 4

Q" ;
CO

K B S T R

N O T E R E Q U E S T E D
6 2 0

6 3 0

6 5 0
6 6 0

6 7 0
6 8 0
6 9 0
7 0 0

7 1 0

7 2 0

7 3 0
7 4 0
7 5 0

7 6 0
7 7 0

7 8 0
7 9 0
8 0 0

8 1 0

8 2 0
8 3 0
8 4 0
8 5 0
8 6 0
8 7 0

8 8 0
8 9 0
9 0 0
9 1 0

9 2 0
9 3 0

I F A t
* : G O T O
I F A $ m

" G'
9 6 0
.. j . .

C H A N G E
T H E N G * N O T G

T H E N J * * N O T J
% : G O T O 9 6 0
I F AS = " P " T H E N P * * N O T P
* : G O T O 9 6 0
I F A S < > " L " T H E N 6 8 0
I F A L * * 8 T H E N A L * 6 : G O T O
9 6 0

A L * * 8 : G O T O 9 6 0
I F A S < > " A " T H E N 7 4 0
V T A B 0 9 : H T A B 8 : G E T A S
I F A S « " L " T H E N H T A B 1 2 : I N P U 1
A L * : G O T O 9 6 0
I F A S * " G " T H E N V T A B 1 0 : H T A B
2 0 : I N P U T A G * : G O T O 9 6 0
I F A S - " O " T H E N V T A B 1 1 . H T A B
1 3 : I N P U T A O * : G O T O 9 6 0
G O T O 9 6 0
I F

C * *
* 3
I F

A S < > '
C * + 1 :
1 : G O T O

A S < > ‘

C " T H E N
I F C * >
9 6 0

7 6 0
6 T H E N

' T H E N 7 8 0
1 8 : I N P U TV T A B 1 3 : H T A B

G O T O 9 6 0
I F A S < > " M
V T A B 1 4 : H T A B
I F A S s " L " T H E N V T A B 1 4
1 4 - I N P U T M L * : G O T O 9 6 0
I F A S s " R " T H E N V T A B 1 5

I S * :

• T H E N 8 3 0
7 : G E T A S

H T A B

H T A B
1 4 : I N P U T
G O T O 9 6 0
I F A S <
V T A B 1 8 :
I F A S <
V T A B 1 8 :
G E T A S :
> A N D A S

M R * :

> " T "
H T A B
> M H "
H T A B

IF AS
< >

G O T O 9 6 0

T H E N 9 3 0
5 : G E T A S

T H E N 8 9 0
1 2 : H T S -
< > C H R S < 1 3

C H R S (1 4 1) T H E N
: P R I N T A S ; . G O T OH T S * H T S 4- A S

8 7 0
G O T O 9 6 0
I F A S < > " V "

V T A B 1 9 : H T A B
G E T A S : I F A S
) AN D A S < >
V T S - V T S + A S : P R I N T A S
9 1 0
G O T O 9 6 0
I F A S « " F " T H E N V T A B 1 6 : H T A B
1 3 : I N P U T F L * : G O T O 9 6 0

1 T H E N 9 2 0
1 2 : V T S *
< > C H R S < 1 3

C H R S (1 4 1 > T H E N

(Continued)

No. 39 - August 1981 MICRO - The 6502/6809 Journal 45

PRINTER BONUS

Listing 1 (Continued)

1 0 7 0 C S t - C S t + E t + " , c , + S T R t
9 4 0 I F A t » " S " T H E N V T A B 1 7 : H T A B (A G %) + N t

1 5 : I N P U T P S % : G O T O 9 6 0 1 0 8 0 C S t « C S t + E t + " , D , " +■ S T R t
9 3 0 I F A * « " Q " T H E N 9 7 0 (AO %> + N t
9 6 0 G O T O 2 1 0 1 0 9 0 C S t « C S t + E t + ” i E , ” +■ V T t
9 7 0 R E M + N t
C O N F I G U R E T I G E R 1 1 0 0 C S t - C S t + E t + " , F , " + H T S

+ N t
9 8 0 C S $ - 1 1 1 0 C S t « C S t + E t 4- " * J , " ■¥ S T R t
9 9 0 I F P % T H E N C S t - C S t ♦ C H R $ < ML % > + " , + S T R t (M R %) ♦

< 1 6) N t
1 0 0 0 I F N O T P % T H E N C S t * C S t + 1 1 2 0 C S t * C S t + E « + M , L , " + S T R t

C H R t < 6) (F L * > + " , 11 + S T R t (F L * - P
1 0 1 0 I F J % T H E N C S t - C S t ♦ C H R t S%) + N t

(4) 1 1 3 0 C S t - C S t + E S + " , P , " + S T R S
1 0 2 0 I F N O T J % T H E N C S t * C S t + < I S %) + N t

C H R t < 5) 1 1 4 0 I F G % T H E N C S t - C S t + C H R S
1 0 3 0 I F C % < 4 T H E N C S t « C S t + (3)

C H R t (1) 1 1 5 0 P R I N T
1 0 4 0 I F C % « > 4 T H E N C % * C % - 1 1 6 0 P R I N T D t ; " P R # " , S L

3 : C S t - C S t * C H R t (2) 1 1 7 0 P R I N T C S t
1 0 3 0 C S t * C S t + C H R t (2 8 + C %> 1 1 8 0 P R I N T D t ; " P R I O “
1 0 6 0 C S t - C S t + E t + " , B , M + S T R t 1 1 9 0 H O ME P R I N T ' T I G E R C O N F I G U

< A L %) + N t R E D * ’ : E N D

46 MICRO - T h e 6502/6809 Journal No. 39 - August 1981

PRINTER BONUS

The only change an Apple owner
with a Paper Tiger 460 may need to
make is to change the variable SL in line
110 to indicate the slot number of his

jprinter interface. For 460 owners with
other computers, the program should be
fairly easy to adapt. If you do not have
reverse video through a function like
Apple's 'INVERSE,' a different method
of indicating the chosen option must be
substituted. Also, the single keystroke
method is only possible if a single key
input function such as GET is available.
Note that GET was also used to input
the string for the tabs. On the Apple, a
comma in a string INPUT results in
multiple strings, not a single string,
unless the entry is typed with quotes (a
nuisance to be avoided).

The program consists of four parts:
documentation and initialization | lines
10-200), the menu printer (lines
210-590), the keystroke interpreter
[lines 600-960), and the command
character transmitter (lines 970-1190).
The menu printer portion looks very
complicated because of the difficulties
in turning inverse on and off and in
maintaining the current value and state
of each option.

c I did find one error in my copy of the
Paper Tiger 460 manual. My copy is
marked 'preliminary' — hopefully it
will be fixed in the permanent manual.
On page 3-14 and 3-15 where it describes
the 'form size' feature, table 3-4 in­
dicates two parameters required while
the description and example discuss on­
ly one. Two is the correct required
number (the second one is not optional],
so the example given will cause the
printer to simply ignore the command
and keep the old value of form size. The
first parameter should be the total form
size in 48ths of an inch as in the exam­
ple. The second parameter should be the
printed portion exclusive of the desired
skip, also in 48ths of an inch. For exam­
ple, if you want a 4.5 inch form with a
one-half inch skip (thus 4 inches used
for print] the correct command is:

< E S C > ,L,216,24,< C R >

TIGER SETUP allows you to indicate
the skip size rather than the printed por­
tion size, a method I find easier.

It appears that some modes of the
printer interfere with others. For exam-

le, auto-justify and proportional modes
cannot be used simultaneously; the pro­
portional mode takes precedence and
overrides the auto-justify mode.

Listing 2
1 0 0 0
1 0 0 5
1 0 1 0
1 0 15
1 0 2 0
1 0 2 5
1 0 3 0
1 0 3 5
1 0 4 0
1 0 4 5
1 0 5 0
1 0 5 5
1 0 6 0
1 0 6 5
I Q 7 0
1 0 7 5
1 0 8 0
1 0 8 5
1 0 9 0
1 0 9 5
1 1 0 0
1 1 0 5
1 1 1 0
1 1 1 5
1 1 2 0
1 1 2 5
1 1 3 0
1 1 3 5
1 1 4 0
1 1 4 5
1 1 5 0
1 1 5 5
1 1 6 0
1 1 6 5
1 1 7 0
1 1 7 5
1 1 8 0
1 1 8 5
1 1 9 0
1 1 8 5
1 2 0 0
1 3 0 0
1 3 1 0

T I G E R D U M P *

B Y *

T E R R Y L A N D E R S O N *

* B E G U N
* L A S T

1 9 8 1 J A N 0 9 *
M O D I F I E D 1 9 8 1 F E B 2 2 *

* W I L L D U M P 8 1 9 2 B Y T E S O F D A T A *
* < U S U A L L Y H I - R E S S C R E E N 1 O R *
* 2) T O T H E I D S 4 6 0 P A P E R T I G E R *

* U S E F U L I N T E R N A L A D D R : *

* 6 0 0 0 2 4 3 7 6 E N T R Y *

ft 6 0 0 1 2 4 5 7 7 H P A G - H I B Y T E O F *
B U F F E R T O P R I N T *
< D E F $ 2 0) *

ft 6 0 4 0 2 4 6 4 0 N U M L I N - * O F H I - *
R E S H O R I Z L I N E S *
(D E F $ C 0 * 1 9 2) *

* 6 0 9 D 2 4 7 3 3 I N V M S K - M A S K B Y T E *
$ 0 0 - N O RMA L (D E F) *
$ 7 F - I N V E R S E V I D *

* 6 1 2 4 2 4 8 6 8 S L O T O F F S E T - - *
S L O T * * $ i q ft
$ l O - S L O T 1 (D E F) *

* - 6 1 2 5 2 4 8 6 9 E X P A N D E D P L O T - - *
$ 0 0 - N O R MA L (D E F) *
$ 8 0 - E X P A N D E D * 2 *

Z E R O F A C E L O G ’ S * * +

0 0 2 6 - 1 3 2 0 H B A S L . E Q $ 2 6
0 0 2 7 - 1 3 3 0 H B A S H . E Q $ 2 7
0 0 5 0 - 1 3 4 0

1 3 5 0
Z S T O R
*

. E Q $ 5 0

0 Q 5 2 - 1 3 6 0 B A S L 0 . E Q 2 S T O R + $ 2
0 0 5 3 - 1 3 7 0 B A S H 0 . E Q Z S T O R + $ 3
O 0 E 6 - 1 3 8 0 H P AG . E Q $ E 6

1 3 9 0
1 4 0 0
1 4 1 0
1 4 2 0
1 4 3 0
1 4 4 0

MO N C A L L S

B A S E A D D R F O R
C U R H I R E S L N

Z F A C E S T O R A G E
N E E D S (1 0 B Y

H G R B Y T P T R
T B L < R O W 7 . . 1)

K B Y T E O F A D D R
G R A F B U F F E R

* * * A / S B A S I C C A L L S * * *

F 4 1 1 - 1 4 3 0
1 4 6 0
1 4 7 0

H P O S N . E Q $ F 4 1 1

1 4 8 0 * * * H A R D W R A D D R
1 4 9 0 *

C 0 8 4 - 1 5 0 0 S T A T U S . E Q $ C 0 8 4
C 0 8 4 - 1 5 1 0 C N T R L . E Q $ C 0 8 4
C 0 8 3 - 1 5 2 0

1 3 3 0
O U T P R T . E Q $ C 0 8 5

1 5 4 0 ft f t * O T H E R C O N S T
1 3 5 0

0 0 2 0 — 1 5 6 0
1 3 7 0

G R B U F
*

. E Q $ 2 0

0 0 C 0 - 1 5 8 0 N U M L I N . E Q 1 9 2
0 0 0 F - 1 5 8 0 S A V S I Z . E Q $ F

16 00
1 6 1 0
1 6 20

P A P E R T I G E R

S E T S H B A S L , H

* ft »
AC I A R E G 1 S
S T A T U S R E G
C O N T R O L R E G
O U T P O R T R E G

ft » *

K B Y T E O F A D D R
G R A F B U F F E R

• O F G R R O W S
* B Y T E S — 1 T O

S A V E F O R T B L
C O N T R O L C O D E S

0 0 0 3 - 1 6 3 0 G R M O D E . E Q $ 0 3 C T R L - C
0 0 0 3 - 1 6 4 0

1 6 5 0
G R P F I X
«

. E Q $ 0 3 C MD P R E F I X
W H I L E I N G R

0 0 0 E - 1 6 6 Q G R A F L F . E Q « 0 E G R A P H I C L F
0 0 0 2 - 1 6 7 0 N O R M O D . E Q $ 0 2 N O R M A L M O D E
0 0 0 9 - 1 6 8 0 H T A B . E Q $ 0 9 C T R L - I
0 0 0 0 - 1 6 9 0

1 7 0 0
1 7 1 0

I N V M S K
*
«

. E Q $ 0 0 I N V E R S E M A S K
U S E $ 7 F T O
I N V E R S E P I X

0 0 1 0 - 1 7 2 0
1 7 3 0
1 7 4 0
1 7 5 0

S L O T 1
*

. E Q $ 1 0 S L O T O F F S E T
F O R S L O T 1

1 9 0 0 * * * O R I G I N * * *
1 9 1 0
1 9 2 0 . OR $ 6 0 0 0 C A L L 2 4 5 7 6
1 9 3 0 . T A $ 6 0 0 0
1 9 4 0

6 0 0 0 - A 9 2 0 2 0 0 0 D UMP L D A t t G R B U F N O R M A L E N T R Y
6 0 0 2 - 8 5 E 6 2 0 1 0 S T A H P AG I N I T H P A G
6 0 0 4 - A 9 0 0 2 0 2 0 L D A * 0 0
6 0 0 6 - 8 D 1 A 6 1 2 0 3 0 S T A R O N U MH I N I T ROW
6 0 0 9 - 8 D 1 9 6 1 2 0 4 0

2 0 5 0
S T A R O N U M L

2 0 6 0 * R E S E T A C I A & I N I T F O R D E F A U L T
2 0 7 0 ft 8 B I T ; 2 S T O P : / 1 6 C L O C K
2 0 8 0 * D I S A B L E I N T E R U P T S
2 0 9 0

6 0 0 C - AC 2 4 6 1 2 1 0 0 L D Y S L O T G E T S L O T *
6 0 0 F - A S 0 3 2 1 1 0 L D A * $ 0 3
6 0 1 1 - 9 9 8 4 CO 2 1 2 0 S T A C N T R L , Y R E S E T A C I A

(Continued)

No. 39 - August 1981 MICRO - The 6502/6809 Journal 47

Listing 2 (Continued)
6 0 1 4 - A 9 1 1 2 1 3 0 L D A • i l l
6 0 1 6 - 9 9 8 4 CO 2 1 4 0 S T A C N T R L , Y S E T D E F A U L T S

2 1 5 0
6 0 1 9 - A 2 0 0 2 1 6 0 S A V E Z P L D X too S A V E C O N T O F
6 0 I G - B 5 5 0 2 1 7 0 S A V E 1 L D A 2 S T O R , X T A B L E S P A C E
6 0 I D - 4 8 2 1 6 0 P H A T O R E S T O R E
6 0 1 E - E 8 2 1 9 0 I N X
6 0 I F - E O 1 0 2 2 0 0 C P X # S A V S I Z + 1 D O N E ?
6 0 2 1 - DO F 8 2 2 1 0 B N E S A V E 1 N O , N E X T

2 2 2 0
6 0 2 3 - 2 0 E 1 6 0 2 2 3 0 J S R P U T S T R S E N D C O N T R O L S
6 0 2 6 - 0 E 2 2 4 0 . DA t G R A F L F D U M P B U F F
6 0 2 7 - 0 3 2 2 5 0 . DA I G R M O D E G R A P H I C M O D E
6 0 2 8 - 0 0 2 2 6 0 . H S 0 0 E N D S T R I N G

2 2 7 0
2 2 8 0 * * * P R I N T L I N E O F 7 R O W S
2 2 8 0

6 0 2 9 - A 9 0 E 2 3 0 0 P R L I N E L D A # $ 0 E I N I T R O W I N D X
6 0 2 B - 8 D 1 B 6 1 2 3 1 0 S T A R O V D E X 1 O F 7 * 2

2 3 2 0
6 0 2 E - A 2 0 0 2 3 3 0 P R L I N I L D X # $ 0 0 I N I T C O L U M N L
6 0 3 0 - AO 0 0 2 3 4 0 L D Y • $ 0 0 C O L U M N H
6 0 3 2 - AD 1 A 6 1 2 3 5 0 L D A R O N U MH G E T R O W N U M / 2
6 0 3 5 - 4 A 2 3 6 0 L S R
6 0 3 6 - AD 1 9 6 1 2 3 7 0 L D A R O N U M L
6 0 3 9 - 2 C 2 5 6 1 2 3 8 0 B I T D O U B L E C H K E X P A N D ?
6 0 3 C - 1 0 0 1 2 3 9 0 B P L P R L I N 2 N O , O K
6 0 3 E - 6 A 2 4 0 0 R O R Y E S , I 2
6 0 3 F — C 8 CO 2 4 1 0 P R L I N 2 C MP I N U M L I N D O N E N U M L I N S ?
6 0 4 1 — DO 0 6 2 4 2 0 B N E P R L I N 3 N O , OK
6 0 4 3 - A 9 8 0 2 4 3 0 L D A # $ 8 0 Y E S , S E T B I T 7
6 0 4 5 - 8 D 1 A 6 1 2 4 4 0 S T A R O N U M H I N D 1 C D O N E
6 0 4 8 - 3 8 2 4 5 0 S E C S E T D O N E
6 0 4 9 - C E I B 6 1 2 4 6 0 P R L I N 3 D E C R O W D E X D E C 1 0 F 7
6 0 4 C - C E 1 B 6 1 2 4 7 0 D E C R O V D E X T W I C E
6 0 4 F - 3 0 1 C 2 4 8 0 B M I P R L I N S R O W D E X < 0 ; D O N E
6 0 5 1 - B O 1 A 2 4 9 0 B C S P R L I N 5 - N U M L I N ; D O N E
6 0 5 3 - 2 0 1 1 F 4 2 5 0 0 J S R H P O S N S E T H B A S
6 0 5 6 - A C I B 6 1 2 5 1 0 L D Y R O W D E X S A V E H B A S
6 0 5 9 - A 5 2 6 2 5 2 0 L D A H B A S L F O R E A C H
6 0 S B - 9 9 5 2 0 0 2 5 3 0 S T A B A S L O , Y R OW
6 0 5 E - A 5 2 7 2 5 4 0 L D A H B A S H
6 0 6 0 - 9 9 5 3 0 0 2 5 3 0 S T A B A S H O , Y
6 0 6 3 - E E 1 9 6 1 2 5 6 0 I N C R O N U M L I N C R O WN U M
6 0 6 6 - DO 0 3 2 3 7 0 B N E P R L I N 4
6 0 6 8 - E E 1 A 6 1 2 5 8 0 I N C R O N U M H
6 0 6 B - DO C 1 2 5 9 0 P R L I N 4 B N E P R L I N I A L W A Y S T A K E N
6 0 6 D - AO 2 7 2 6 0 0 P R L I N S L D Y # $ 2 7 I N I T C O L U M N
6 0 6 F - 8 C 1 C 6 1 2 6 1 0 S T Y C O L B Y T B Y T E C N T

2 6 2 0
2 6 3 0 * * * P R I N T 7 C O L U M N S O F 7
2 6 4 0

6 0 7 2 - AO 0 6 2 6 5 0 P R 7 C O L L D Y • $ 6 I N I T R O W I N D X
6 0 7 4 - A 2 OC 2 6 6 0 L D X # $ OC I N I T R O W * 2
6 0 7 6 - A 1 5 2 2 6 7 0 P R 7 C 1 L D A < B A S L O , X) G E T G R A F B Y T
6 0 7 8 - 9 9 I D 6 1 2 6 8 0 S T A R O W B Y T , Y S T O F O R P R I N T
6 0 7 B - F 6 5 2 2 6 9 0 I N C B A S L O , X S E T F O R N X T
6 0 7 D - 8 8 2 7 0 0 D E Y D E C ROW
6 0 7 E - CA 2 7 1 0 D E X & X T W I C E
6 0 7 F - CA 2 7 2 0 D E X
6 0 8 0 - E C 1 B 6 1 2 7 3 0 C P X R O W D E X » R OWD E X ?
6 0 8 3 - DO F 1 2 7 4 0 B N E P R 7 C 1 N O , N X T B Y T E
6 0 8 5 - AO 0 7 2 7 5 0 L D Y # $ 0 7 8 B I T S , 0 1 S T

2 7 6 0
6 0 8 7 - AD 1 B 6 1 2 7 7 0 P R 1 C O L L D A R O W D E X R O W S R O W D E X . 7
6 0 8 A — 4 A 2 7 8 0 L S R / 2
6 0 6 6 - AA 2 7 9 0 T A X U S E A S T M D E X
6 0 8 C - E 8 2 8 0 0 I N X + 1
6 0 8 D - A 9 0 0 2 8 1 0 L D A # $ 0 0 C L R A C C
6 0 8 F - 7 E I D 6 1 2 8 2 0 P R 1 C 1 R O R R O W B Y T , X E A C H B Y T E
6 0 9 2 - 2 A 2 8 3 0 R O L I N T O A C C U M
6 0 9 3 - E 8 2 8 4 0 I N X
6 0 9 4 - EO 0 7 2 8 5 0 C P X * $ 0 7 G O T 7 ?
6 0 9 6 - DO F 7 2 8 6 0 B N E P R 1 C 1 N O , N E X T
6 0 9 8 - C 0 0 0 2 8 7 0 C P Y # $ 0 0 Y . B I T O ' S ?
6 0 9 A - F O 1 1 2 8 8 0 B E Q P R 1 C 3 Y , D O N * T P R I N T
6 0 9 C - 4 9 0 0 2 8 9 0 E O R # I N V M S K N O , A P P L Y M A S K
6 0 9 E — 2 9 7 F 2 9 0 0 AND # $ 7 F K E E P B I T 7 . 0
6 0 A 0 - 2 C 2 5 6 1 2 9 1 0 B I T D O U B L E C H K E X P A N D E D ?
6 0 A 3 - 1 0 0 5 2 9 2 0 B P L P R 1 C 2 N O , O U T O N C E
6 0 A S - 4 8 2 9 3 0 P H A Y E S , S A V E A C C
6 0 A 6 — 2 0 D 4 6 0 2 9 4 0 J S R O U T B Y T E X T R A O U T
6 0 A 9 - 6 8 2 9 5 0 P L A R E S T O R A C C
6 0 A A - 2 0 D 4 6 0 2 9 6 0 P R 1 C 2 J S R O U T B Y T M A I N O U T
6 0 A D - 8 8 2 9 7 0 P R 1 C 3 D E Y N X T C O L O F 7
6 0 A E — 1 0 D 7 2 9 8 0 B P L P R 1 C O L D O N E ? N O , N E X T

2 8 >0
6 0 6 0 - C E 1 C 5 1 3 0 0 0 D E C C O L B Y T N X T 7 C O L * S
6 0 B 3 - 1 0 B D 3 0 1 0 B P L P R 7 C O L D O N E ? N , N X T 7
6 0 B 5 - 2 0 E 1 6 0 3 0 2 0 J S R P U T S T R Y , S E N D < C R >
6 0 B 8 - 0 3 3 0 3 0 . DA t G R P F I X & < G R L F >
6 0 B 9 - O E 3 0 4 0 . DA # G R A F L F
6 0 B A - 0 0 3 0 5 0 . H S 0 0 E N D S T R
6 0 B B — 2 C 1 A 6 1 3 0 6 0 B I T R O N U M H L A S T 7 R O W S ?
6 0 B E — 3 0 0 3 3 0 7 0 B M I D O N E L A S T ? Y , D O N E
6 O C O - 4 C 2 9 6 0 3 0 8 0 J M P P R L I N E N , N E X T L I N E

3 0 9 0
6 0 C 3 - 2 0 E 1 6 0 3 1 0 0 D O N E J S R P U T S T R E X I T G R A F
6 0 C 6 - 0 3 3 1 1 0 . DA I G R P F I X M O D E
6 0 C 7 — 0 2 3 1 2 0 . DA I N O R M O D
6 0 C 8 - O E 3 1 3 0 . D A I G R A F L F & 2 < G R L F > * S
6 0 C 9 - OE 3 1 4 0 . DA t G R A F L F
6 0 C A - 0 0 3 1 5 0 . H S 0 0 E N D S T R

3 1 6 0
6 0 C B - A 2 O F 3 1 7 0 R E S T Z P L D X # S A V S I Z R E S T O R E
6 0 C D - 6 8 3 1 8 0 R E S T 1 P L A Z P A G E U S E D

(Continued)

TIGER DUMP

We also need a way to print graphic
material which has been developed on
Apple's Hi-Res screen. The preliminary I
manual gives no information about the
graphic mode except how to get into it
(not even how to get out). Fortunately, I
had had some experience with the Paper
Tiger 440 and suspected they would be
similar. The only significant differences
are that the 460 prints seven dot rows
(not all nine) in each head pass across
the page instead of six and that < SO >
or control-N is used as a 'graphic' line
feed [move paper exactly seven dot
rows) rather than a < VT > or control-K
as on the 440.

TIGER DUMP takes data stored in
Apple's RAM in Hi-Res screen buffer for­
mat and reorganizes the information to
construct bytes consisting of seven dots
in a column, one for each of the seven
rows. A one indicates a dot that is 'on'
and a zero indicates a dot that is 'off.' It
then sends 280 such seven-dot columns
to form one print head pass, printing
seven horizontal rows. It repeats with
another seven rows until all the data is
printed. Unfortunately, seven does not
go evenly into 192, the number of rows
in Apple's Hi-Res screen. The last seven
rows only have four rows of data, so ,
zeros are assumed for the other rows and ®
they are printed. This means that
another Hi-Res screenful cannot be
printed immediately, adjoining the
previous one. Three blank lines will
separate them. It's difficult to print
larger pictures when you use multiple
screenfuls. I wish the 460 would use
eight print wires and use all eight bits of
the data bytes. It would then run 14%
faster and not have extra lines left over.

TIGER DUMP includes several
features I have not seen in other graphic
dump programs. These features are
chosen by POKEing new values for any
of five parameters. You can specify the
number of lines to print, allowing only a
part of the Hi-Res buffer to be printed
(the part must be at the top as viewed,
i.e. at beginning of buffer). You can
specify the location of the buffer allow­
ing vise of Hi-Res screen two or any
other 8K bytes of memory as long as it is
in Hi-Res buffer format. Hi-Res buffers
are organized so that lines that appear
adjacent on the screen are not stored
next to each other. Any data to be
printed with this program must be
stored exactly like a Hi-Res buffer, but it
need not be in Hi-Res page one or two ■/
This would allow several screenfuls to
be BLOADed into memory wherever
there is free room, and then printed.

48 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

O J f f i K E i E T O PRINTER BONUS
An inverse or reverse video mask is

used so you can invert a picture while
printing, but the stored picture is not
affected as in the programs I have seen

'■ for the 440. Several of them EOR
> (exclusive-or) all the bytes of the Hi-Res

page before printing. TIGER DUMP
simply applies the mask to each con­
structed byte before sending it, but does
not affect the stored bytes. Each of the
first seven bits of the mask byte affect
one of the seven rows; a zero leaves it
unaffected, a one inverts it. The mask
byte $7F or $FF would invert the entire
picture and $00 would print it normally.
A stripped effect can be obtained by ex­
perimenting with other mask bytes. For
example, $55 = 01010101 and $2A =
00101010, would invert alternate rows.

The inversion feature is particularly
helpful when printing nearly ‘photo­
graphic’ pictures such as those in the
Apple Software Bank Contributed Pro­
gram Slide Shows. On the Apple
screens, one-bits result in a light dot on
a dark background, but on the printer, a
one normally yields a black dot on white
paper. The result is a print which looks
like a negative. This is desirable for a
line drawing. Inverting a picture gives it
a more satisfying result.

The higher resolution of the 460
compared to the 440 results in much
smaller prints if you use the minimum
dot spacing (84/inch) for each Hi-Res
dot. The total print for 280 dots by 192
dots is only 3.33 by 2.29 inches. This is
nice for some applications but often a
larger print size is desirable. You could
use alternate dot locations on the
printer, resulting in 42 dots/inch and a
print doubled in size, but that would
result in white spaces between dots
causing black regions to appear gray.

A better method is to map each Hi-
Res dot into a 2 by 2 pattern of dots;
each Hi-Res dot becomes a big dot. Then
the dots still overlap, allowing solidly
printed regions, but the image is twice
as large. No additional detail is allowed
though the print is larger, because no
smaller detail information can be stored
in Apple's Hi-Res buffer. TIGER DUMP
allows the user to choose between the
small size print or the expanded print
with the default being the small size.

To use TIGER DUMP simply
prepare the Hi-Res buffer or BLOAD a
stored picture and BRUN TIGER
DUMP.

Listing 2 (Continued)
6 0 C E > 6 5 5 0 3 1 9 0 S T A Z S T O R , X
6 0 D 0 - C A 3 2 0 0 D E X
6 G D I - 1 0 F A 3 2 1 0

3 2 2 Q
B P L R E S T 1

6 0 D 3 — 6 0 3 2 3 0
3 2 4 0
3 2 5 0

R E T U R N R T S R T N F O R M D U M P

3 2 6 0 * S U B R O U T B Y T E *
3 2 7 0 * O U T P U T S B Y T E C H E C K I N G F O R *
3 2 8 0 * G R A P H I C P R E F I X 6 D B L 1 I N G «
3 2 9 0
3 3 0 0

6 0 D 4 - C 9 0 3 3 3 1 0 O U T B Y T C MP • G R P F I X C H K
6 0 D 6 - DO 0 5 3 3 2 0 B N E O U T B 1 N O , O U T O N C E
6 0 0 8 - 2 0 0 0 6 1 3 3 3 0 J S R C O U T Y , O U T T V I C E
6 0 D B — A S 0 3 3 3 4 0 L D A I G R P F I X F O R S E C O N D
6 O D D - 2 0 0 0 6 1 3 3 5 0 O U T B 1 J S R C O U T P R I N T I T
6 0 E 0 - 6 0 3 3 6 0

3 3 7 0
3 3 8 0
3 3 9 0 *

R T S R E T U R N

*
3 4 0 0 * S U B R P R I N T S T R I N G *
3 4 1 0 * *
3 4 2 0 * 1 9 8 1 J A N 1 1 *
3 4 3 0 * *
3 4 4 0 * S U B R V I L L P R I N T T H E S T R I N G *
3 4 5 0 * T H A T I M M E D I A T E L Y F O L L O V S T H E *
3 4 6 0 * J S R AND E N D S W I T H A N U L L O R *
3 4 7 0 * A S C I I 0 0 *
3 4 8 0 * N O T E : U S E S $ F E , F F F O R T E M P *
3 4 9 0 * S T O R A G E O F R E T U R N A D D R . *
3 3 0 0 * *
3 5 1 0
3 3 2 0
3 5 3 0 * * * Z E R O P A G E L O C ' S
3 5 4 0

0 0 3 0 - 3 5 5 0 T E M P L . E Q Z S T O R T E M P S T O R A G E
0 0 5 1 - 3 5 6 0

3 3 7 0
3 5 8 0

T E M P H . E Q T E M P L + 1 F O R R T N A D D R

6 0 E 1 - 6 6 3 5 9 0 P U T S T R P L A S A V E R T N A D D R
5 0 E 2 - 8 5 5 0 3 6 0 0 S T A T E M P L
6 0 E 4 - 6 8 3 6 1 0 P L A
6 0 E 5 - 8 5 5 1 3 6 2 0 S T A T E M P H
6 0 E 7 - A 0 0 0 3 6 3 0 P U T S T 1 L D Y # $ 0 0 O F F S E T
6 0 E 9 - E 6 5 0 3 6 4 0 I N C T E M P L I N C P O I N T E R
6 0 E B - DO 0 2 3 6 5 0 B N E P U T S T 2
6 0 E D - E 6 5 1 3 6 6 0 I N C T E M P H
6 0 E F - B 1 5 0 3 6 7 0 P U T S T 2 L D A (T E M P L) Y L O A D C H R
6 0 F 1 - F 0 0 6 3 6 8 0 B E Q P U T S T 3 0 ? Y , D O N E
6 0 F 3 - 2 0 0 0 6 1 3 6 9 0 J S R C O U T N , P R I N T
6 0 F 6 - 3 8 3 7 0 0 S E C
6 0 F 7 - B O E E 3 7 1 0 B C S P U T S T 1 A L V A Y S T A K E N
6 0 F 9 - A 5 5 1 3 7 2 0 P U T S T 3 L D A T E M P H R E S T O R E
6 0 F B - 4 8 3 7 3 0 P H A U P D A T E D
6 0 F C - A 5 5 0 3 7 4 0 L D A T E M P L R E T U R N
6 0 F E - 4 8 3 7 5 0 P H A A D D R
6 0 F F - 6 0 3 7 6 0 R T S

3 7 7 0 * * * E N D S U B R P U T S T R I N G * * * *
3 7 8 0
3 7 9 0 Ik * * * * * * * * * * * *
3 8 0 0 « S U B R C O U T *
3 8 1 0 * * * * * * * * * * * * *
3 8 2 0
3 8 3 0 * P U T S C H A R O U T T H R U A C I A
3 8 4 0 * D I R E C T L Y
3 8 5 0

6 1 Q 0 - 8 D 1 8 6 1 3 8 6 0 C O U T S T A A C C S A V S A V E A C C
6 1 0 3 - 9 8 3 8 7 0 T Y A & Y R E G
6 1 0 4 - 4 8 3 8 8 0 P H A
6 1 0 5 - A C 2 4 6 1 3 8 9 0 L D Y S L O T I N D E X B Y S L O T
6 1 0 8 - B 9 8 4 CO 3 9 0 0 C O U T 1 L D A S T A T U S , Y G E T A C I A S T A T
6 1 0 B - 2 9 0 2 3 9 1 0 A ND • $ 0 2 C H K R E A D Y
6 1 0 D - F 0 F 9 3 9 2 0 B E Q C O U T 1 N O T ? L O O P
6 1 0 F - AD 1 8 6 1 3 9 3 0 L D A A C C S A V R E S T O R A C C
6 1 1 2 - S 9 8 5 CO 3 9 4 0 S T A O U T P R T , Y & P U T O U T
6 1 1 5 - 6 8 3 9 5 0 P L A R E S T O R E
6 1 1 6 - A 8 3 9 6 0 T A Y Y
6 1 1 7 - 6 0 3 9 7 0

3 9 8 0
R T S R E T U R N

3 9 9 0 * * * E N D S U B R C O U T * ft *
4 0 0 0 * * * L O C A L D A T A » * ft
4 0 1 0

6 1 1 8 - 4 0 2 0 A C C S A V . B S % 1 S A V E A C C U M
6 1 1 9 - 4 0 3 0 R O N U M L . B S $ 1 R O WN U M
6 1 1 A - 4 0 4 0

4 0 5 0
4 0 6 0

R O N U M H
*
*

. B S $ 1 H I B Y T E 0 . . 1
$ 8 0 - I N D I C
R E A C H N U M L I N

6 1 1 B - 4 0 7 0 R O V D E X . B S $ 1 0 . . 1 3 O R $ D
6 1 1 C - 4 0 8 0 C O L B Y T . B S $ 1 C O L U M N B Y T C N T
6 1 I D - 4 0 9 0 R O V B Y T . B S $ 7
6 1 2 4 - 1 0 4 1 0 0

4 1 1 0
S L O T
*

. D A f t S L O T l S L O T O F F S E T
$ N 0

6 1 2 5 - 0 0 4 1 2 0
4 1 3 0
4 1 4 0

D O U B L E
*

. D A # 0 0 E X P A N D E D P L O T
s $ 8 0 ; N O R M - 0 0

4 1 5 0 * * * E N D O F T I G E R D U M P
4 1 6 6
4 1 7 0 Z E N D . E N

S Y M B O L T A B L E

6 1 1 8 - A C C S A V
0 0 5 3 - B A S H 0
0 6 5 2 - B A S L O
C 0 8 4 - C N T R L

No. 39 - August 1981 MICRO - The 6502/6809 Journal 49

FIDO PUPPV FARM
<PROPORTION OF BREEDS)

A= POODLE 5%
E=COLL IE 15%
C=GERMAN SHEP. 2&k
D=MONGREL 30%
E= TERRIER 15%
F=BEAGLE 15%

A=POODLE 5Ji
B=COLL IE 15%
C=GERMAN SHEP.
D=MONGREL 30X
E=TERRIER 15X
F = BEAGLE 15 V.

FIDO PUPPV FARM
(PROPORTION OF BREEDS)

If you wish to use any of the options:

1. BLOAD TIGER DUMP.

2. Modify $6001 or 24577 to the
high byte of the buffer location if
it is not Hi-Res page one; for ex­
ample, for Hi-Res page two,
change it to $40 or 64.

3. Modify $6040 or 24640 to the
number of lines to be printed if
less than 192.

4. Set the inverse mask at $609D or
24733 if you want any lines in­
verted; a $7F or 127 will invert
the whole picture.

5. Change $6125 or 24869 from $00
to $80 or 128 if you want an ex­
panded print.

6 . Call $6000 or 24576 to run.

BSAVE TIGER DUMP INVERTED,
A$6000, L$126 if you want a copy of
this new version.

TIGER DUMP is located just above
Hi-Res page two. If it is to be used with a
BASIC program you should protect the
Hi-Res pages and TIGER DUMP by set­
ting LOMEM: 24870 or greater. This
will cause variable storage to begin
above TIGER DUMP. If you have an
assembler, TIGER DUMP can easily be
relocated to any other unused location
such as just below DOS (then HIMEM
should be moved to below it).

I use slot one for my printer inter­
face. If yours is in another slot change
$6110 or 24848 to $N0 or N* 16 where N
is your slot number.

TIGER DUMP contains its own I/O
driver in a subroutine called COUT.
This saves the necessity of a PR#n call

to the monitor. But more importantly,
the I/O driver contained in the firmware
of many printer interface cards contains
options which are selected by control
characters. These often interfere with
the 460 's use of these characters. The
disadvantage of providing my own I/O
driver is that the TIGER DUMP is not as
universal.

TIGER DUMP was written for use
with the serial interface on the AIO
serial/parallel interface board by SSM.
For other interfaces you might have to
change the locations for the output port
OUTPRT and the status and control
registers, STATUS and CNTRL at
$C085, $C084, and $C083 respectively.
Apparently some other serial interfaces
are compatible. I tried the program with
an unmodified California Computer Sys­
tems Asynchronous serial card and with (
no modifications and it worked fine at
1200 baud, but seemed to have some er­
rors (displaced columns) at 9600 baud.

50 MICRO - The 6502/6809 Journal No. 39 - August 1981

If your interface's I/O routine does
not trap any of the control characters,
you could eliminate my COUT. This
would then allow the use of the standard
driver. Simply change calls to COUT to
call the monitors standard COUT at
$FDED. Then you can do a PR#N before
running TIGER DUMP.

The serial interface should be run at
as high a baud rate as possible. Any rate
of 1200 or above will allow the printer to
print at near its maximum rate in the
text mode. In the graphic mode at least
five times as many bytes must be sent
per inch of head motion (maximum of
16.8 bytes/inch in text and 84 bytes/
inch in graphic). Thus even at 1200
bits/sec the printer must wait at the end
of each seven row head pass for more
data to be transmitted. At 9600 bit/sec,
however, there is little delay; the printer
is kept busy.

PUTSTR

TIGER DUMP uses a subroutine
called PUTSTR that machine language
programmers might find useful in other
programs. It will print the string that
immediately follows the JSR instruc­
tion. The string must end with a
< null > or ASCH 0 0 .1 have found this a

Singing the file tra n s fe r blues? Then...

G e t ; B . I . T . S . !
U s e y o u r M i c r o m o d e m K A I Q 2 C a r d . o r

A p p l e C o m m C a r d 3 t o :

Send data files, BASIC programs,
even machine code

t o m o s t c o m p u t e r s o v e r p h o n e I i n e s .

Copy anything you see

i n t o a 3 1 K b u f f e r t h e n s a v e i t o n d i s k
3 n d / o r p r i n t i t u n d e r y o u r c o m p l e t e c o n t r o l .

Many mare features!

See i t at your favorite computer
store today.

T r a d e m a r k s h e l d b y :

1 - H a y e s M i c r o c o m p u t e r P r o d u c t s I n c .

2 - S S M

3 - A p p l e C o m p u t e r I n c .

B I . T . S . i s a t r a d e m a r k o f :

M icroSoftware Systems
7 3 2 7 J o n e s B r a n c h D r . S u i t e < 4 0 0

M c L e a n , V i r g i n i a 2 2 1 0 2
C 7 0 3) 3 B 5 ' 2 9 4 4

very handy way to print strings for
messages and prompts in machine
language programs. It takes much less
memory than loading each character
into the accumulator with a LDA-
immediate. The subroutine gets the ad­
dress of the first byte of the string from
the return address on the stack. Then it
loads and prints each character until a
$00 is found. Then it pushes a return ad­
dress on the stack that points to the first
instruction beyond the string and does a
return from subroutine. This routine
will even print strings longer than one
page, 256 bytes.

I would like to thank Dr. Claude C.
Bamett, who helped me develop many of
the ideas in these programs and helped
test them on some of his students.

Terry Anderson is Professor of Physics and
Computer Science at Walla Walla College.
He teaches an introductory physics
laboratory course using eight Apples for
data acquisition and analysis. He also has
an Apple at home which he uses for text
editing, program development and, with a
DC Hayes modem, as a terminal to the
college's HP3000 minicomputer.

Our Hardware Catalog
lists the newest
6502/6809-based
hardware on the
market. (Please see
page 80 in this issue.)
If you have a product
to announce, simply
write and request a
form.

Hardware Catalog
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA
01824

JUCOO

LOGICAL SOFTWARE, INC.
a n n o un c es :

MAIL EXPRESS
A NEW MAIL LIST UTILITY FOR THE APPLE II.

— Up to 2,200 Names per File
— Sort by Company Name, Customer Name,

City, State Zip
— Prints Return Addresses
— Merge up to 16 Files
— Easy User Definable Codes for City, State and

Zip to Save Time and Disk Space

This is an easy to use professional quality mail
list able to handle large or small files.

Introductory Price $49.95
$2.00 Postage & Handling

Logical Software, Inc.
P.O. Box 354
Farmington, Ml 48024
(313) 477-2565

®Apple and Apple II are registered
trademarks of Apple Computer Inc J

No. 39 - August 1981 MICRO - The 6502/6809 Journal 51

PRINTER BONUS

Terrapin Turtle
Be one of the first persons to own your own robot. It's fun, and
unlike other pets, the Turtle obeys your commands. It moves,
draws, blinks, beeps, has a sense of touch, and doesn't need
to be housebroken. You and your Turtle can draw pictures,
navigate mazes, push objects, map rooms, and much, much
more. The Turtle's activities are limited only by your imagina­
tion, providing a challenge for users of all ages. Interfaces,
including software for easy control of the Turtle, are available
forthe Apple, Atari, and S -100 bus computers.

Terrapin will give a free Turtle to the person or persons who
develop the best program for the Turtle by March 31, 1982. In
addition, Terrapin will pay royalties. For more information,
write or call;
Terrapin. Inc.
678 Massachusetts Avenue
Cambridge, MA02139
(617)492-8816

Books available from Terrapin
Turtle Geometry by Abelson and diSessa
An innovative book using Turtle Graphics to explore
geometry, motion, symmetry and topology. MIT Press $20.00
Mindstorms by Seymour Papert
An exciting book about children, computers, and learning.
Explains the philosophy of the new LOGO language. Basic
Books$12.95

Artificial Intelligence by Patrick Winston
Explores several issues including analysis of vision and lan­
guage. An introduction to the LISP language is incorporated
in the second section. Addison-Wesley $ 18.95
Katie and the Computer by Fred D'Ignazio
A children's picture book adventure about a young girl's
imaginary trip inside a computer. Creative Computing $6.95
Small Computers by Fred D'Ignazio
A book about the future of small computers and robots, aimed
at adolescents. Franklin Watts $9.95

THE INSPECTOR
These utilities enable the user to examine data
both in the Apple’s memory and on disks. Simple
commands allow scanning through RAM and
ROM memory as well as reading, displaying and
changing data on disk.

Read and rewrite sections of Random Access files.
Reconstruct a blown VTOC. Weed out unwanted
control characters in CATALOG listings.
UnDELETE deleted files or programs. Repair files
that have erroneous data. All without being under
program control, and more.....
You may transfer sectors between disks. This
allows you to transfer DOS from one disk to
another thereby saving a blown disk when all that's
blown is DOS itself; or to restore a portion of a
blown disk from its backup disk.

Its unique NIBBLE read routine provides a Hi-Res
graphical representation of the data on any track
allowing you to immediately ascertain whether
your disk is 13 sector or 16 sector. Get an I/O
error...is it because you have the wrong DOS up?
is it because of a bad address field? or a bad data
field? or because a track was erased? This will
allow you to tell in an instant without blowing away
any program in memory.

APPLE DISK

• Repairs Blown Disks
• Reads Nibbles
• Maps Disk Space
• Searches Disks

The INSPECTOR even lets you search through
an entire disk or through on-board memory for the
appearance of a string. Now you can easily add
lower case to your programs (with LCA).

Do you want to add so-called illegal line numbers
into your program? or have several of the same line
numbers in a program (like the professional
programmers do)? or input unavailable commands
(like HIMEM to Integer Basic)? or put quotation
marks into PRINT statements? Here’s the easy
way to do them all!

AND MORE
The INSPECTOR provides a USER exit that will
interface your own subroutines with those of the
INSPECTOR itself. For example, just put a
screen dump routine (sample included in
documentation) at HEX 0300 and press CTRL-Z.
The contents of the screen page will print to your
printer.

ROM RESIDENT ROUTINES
The INSPECTOR utilities come on an easily
installed EPROM. This makes them always
available for instant use. No need to load a disk
and run a program.

FULLY DOCUMENTED
Unlike other software of its kind, The
INSPECTOR comes with an EASY to
understand manual and reference card. Examples
and graphics help even the uninitiated use the
power of these utilities. And furthermore, we offer
the kind of personal service which you have never
experienced from 9 software vendor before.

MEMORY UTILITY

Searches Memory
Edits Disk Sectors
Outputs Screen to Printer
Displays Memory In HEX/ASCII

See your LOCAL DEALER OR . . .
Mastercard or Visa users call TO LL FREE 1*
800-835-2246. Kansas residents call 1-800-
362-2421. Or send $49.95. Illinois residents
add $3 sales tax.

SYSTEM REQUIREMENTS
All Apple II configurations that have access to Integer Basic
(either in ROM or RAM) will support The IN SP E C T O R .
Ju st place the chip in empty socket D8 either on the mother
board or in an Integer firmware card. Apple 11+ systems
with RAM expansion boards or language systems will
receive the IN SP E C T O R on disk to merge and load with
INTBASIC.

And...if you have an Apple II +, without either RAM or
ROM access to Integer Basic, you will still be able to use
The IN SP E C T O R , because we are making available 16k
RAM expansion boards at a very affordable price. Not only
will you be able to use The IN SP E C T O R , but you will also
have access to Integer Basic and other languages. These
boards normally retail for $195.00. Our price for BOTH the
IN SP E C T O R and our 16k RAM board is $195.00, a
savings of $49.95 over the price of purchasing both
separately.

Another Quality Product from
Omega Software Products, Inc.
222 S. Riverside Plaza, Chicago, IL 60606
Phone (312) 648-1944

* 1981 Omega Software Products, Inc.
Apple is a registered trademark of Apple Computer, Inc.

BDU3

52 M IC R O -T he 6502/6809 Journal No. 39 - August 1981

PETICBM IEEE 488 to
Parallel Printer Interface

The author presents an interface
that allows a parallel printer to
be connected to PET’s IEEE-488
port. This maintains
compatibility with PET BASIC
CMD and PRINT# commands.

Alan Hawthorne
611 Vista Drive
Clinton, Tennessee 37716

Wouldn't it be nice to avoid shelling out
between $65 and $150 for an interface
board, plus another $50 for an IEEE 488
interface cable just to be able to interface
a non-CBM printer to your PET/CBM?
Well, that was the question I was faced
with recently after purchasing a new
CBM 8032 and 8050 disk drive along
with an Integral Data System 460 Paper
Tiger, which promised to provide letter-
quality printout at dot-matrix speed
(and price). An alternative was to use
the PET/CBM parallel port for the
printer and write a machine language
program to output the characters to the
printer. However, this solution wasn't
too promising since I would not be able
to use the BASIC PRINT# statement nor
would I be able to list programs, which
would be a considerable sacrifice. I was
convinced that with a little thought, a
few simple logic ICs, and a couple of
spare connectors, I could make, a func­
tional IEEE-parallel printer interface,
and, in addition to the challenge of the
project, I could save up to $150 and still
have the output features I wanted. Hav­
ing been successful in the design and
implementation of this project, I will
describe it in the event there are other

Figure 1: IEEE-488 handshake protocol
using DAV, NDAC, and NRFD.

5V ■

0V-

5V -

0V -
5V-

0V -
5V ■

ov-

-DAV

-NRFD

-NDAC

-DATA

PET/CBM owners with the same need.
No guarantee is made as to the conform­
ity of the interface to IEEE standards or
as to the validity of your PET/CBM
warranty with the interface. However, I
have successfully operated the printer
interface with my CBM 8032 and 8050
disk drive, as well as a PET 2001, with
no detrimental effects.

The IEEE bus consists of three types
of signals: data, transfer, and manage­
ment. Each device on the bus is either a
talker or a listener. There are eight data
lines which provide the parallel transfer

of data from a talker to a listener, and
also provide address information to the
devices on the bus, depending on the
state of the management signals. The
transfer lines implement the hand­
shaking protocol between the talkers
and the listeners on the bus. There are
three such signals: DAV = data valid,
NRFD = not ready for data, and NDAC
= data not accepted. The DAV signal
originates from die talker, while NRFD
and NDAC signals are provided by the
listeners. Figure 1 illustrates the hand­
shaking protocol implemented with
these transfer signals.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 53

Figure 3: Timing diagram associated with the Interface circuit in figure 2.

BUS MODE

SIGNAL ADDRESSING DATA

5V -

OV-

STROBE

BUSY

5 V -

OV -

5 V -

0V-

5V -

OV-

5V •

ov-

5V •

OV •

DIO 1-7

OV

" Busy only if printer buffer is full.

The final group of signals consists of
the management lines. There are five of
these lines: IFC = interface clear, SRQ
= service request, ATN = attention,
REN = remote enable, and EOI = end
or identify. The management signals
control and indicate whether data or
device addressing information is on the
bus. Not all of these management sig­
nals are implemented in the PET/CBM.
All bus signals are implemented as nega­
tive logic; i.e., a high level corresponds
to a zero or false state, while a low level
corresponds to a one or true state.

When a BASIC OPEN command is
performed, the operating system tells
the specified device to listen. Optional­
ly, the secondary address and the file
name may be transmitted at the same
time. Likewise, a CLOSE command in­
structs the device associated with that
logical unit to unlisten.

A PRINT# command first sends a
device listen instruction, then transfers
the ASCH characters of the print state­
ment indicating the last character. Thus
if a circuit could be designed which
would enable data transfer to the printer
when a PRINT# statement begins, and
disable it at the end of the statement
while not listening to other devices'
data or addressing instructions, the
interface would be achieved.

Interface Design

Figure 2 shows a simple interface
which will work with the PET/CBM
IEEE port when no other device (in­
cluding a disk drive) is on the bus. The
associated timing diagram is presented
in figure 3. The interface is imple­
mented with only two ICs, a 7400 quad
dual-input nand gate and a 7405 hex
inverter with open-collector outputs.
Open-collector outputs are used in order
for the NDAC and NRFD handshake
signals to be wire; ORed with other
devices. If your printer will operate with
negative logic, then the inverting of the
data lines will not be necessary. When
addressing information is on the data
bus, the ATN line will be held low;
while data is on the bus the ATN line
remains high. The arrangement in figure
2 will strobe the printer on when
ATN*DAV is true, thus providing the
needed decoding to distinguish between
data and addressing information on the
IEEE bus.

When the printer buffer is full, the
printer BUSY lin e provides the
necessary handshake signal to NRFD to
allow the computer to wait until the
printer is no longer busy. This circuit
indicates to the PET/CBM that data is

accepted as soon as the IEEE DAV goes
low. This requires the printer to latch
the data within the time that DAV is
low, whereas if implemented as a true
IEEE device, the computer would wait
until the printer acknowledged receipt
of the data. This should not be a limita­
tion for most parallel printers but may
be a point to test if the interface doesn't
work for you.

If another IEEE device, such as a disk
drive, is present, then the simple two-
chip circuit of figure 2 will not be ade­
quate to interface the printer. Additional
circuitry will be required to decode
device addressing. The address decoding
is accomplished with a 7470, which is
an AND-gated J-K positive-edge-
triggered flip-flop with preset and clear.
Figure 4 shows the function table for
this IC.

For the PET/CBM peripherals, the
normal IEEE device addresses are an 8
for the disk drive and a 4 for the printer.
These device addresses are assumed in
the printer interface design shown in
figure 5. As shown in figure 4, Q will be
set high on the positive edge of the clock
pulse if the J input is high and the K in­
put is low. Likewise, Q will be set low
on the positive edge of the clock pulse if
the J input is low and the K input is

high. Also Q is set low if the clear input
is brought low. These three functions
allow the address decoding to be accom­
plished with only this one IC when the
Q output is NANDed with the DAV and
ATN bus signals. The appropriate clock­
ing pulse is obtained by NANDing the
ATN and DAV signal so that a clock
pulse occurs when valid addressing
signals are on the IEEE bus. The clock
does not function when valid data is on
the bus.

When the PET/CBM outputs data to
the IEEE port via a PRINT# statement,
the following address bytes (ATN low)
are output first: a $2x, where x is the
device address, and a $6y, where y is the
secondary address specified in the OPEN
statement. An OPEN statement gives a

Figure 4: Functions of a 7470 and gated
J-K posltlve-edge-trlggered flip-flop.

SET CLR CLK J K Q Q

L H X X X H L
H L X X X L H
H H t L L Q Q
H H t H L H L
H H t L H L H
H H t H H TOGGLE
H H L X X Q Q

t — Positive transition.
X — Either level.

54 M IC R O -T h e 6502/6809 Journal No. 39 - August 1981

Figure 6: Timing diagram associated with the Interface circuit In figure 5.

SIGNAL PRINTER ON PRINTER OFF

n __ i i__ r
5V •

0V-_ X

X

Figure 5; lEEE-prlnter Interface with address decoding capability.

010 2 '

DIO 3'

DIO 4

DIO 5 '

010 6 .

DIO 7 ‘

$2x (x is device address) followed by a
$Fy (y is secondary address), and a
CLOSE statement gives a $ lx followed
by a $Ey. The EOI line is brought low
concurrent with the last transmitted
data byte. Complete address decoding is
not accomplished with the 7470 but suf­
ficient lines are decoded to allow the
interface to recognize a $24 (printer
address) and to gate the printer on (i.e.,
set Q high). When the last data character
of a PRINT# statement is transmitted,
the EOI signal gates the printer off (i.e.,
set Q low). Since the $24 address code is
also transmitted when an OPEN or a
CLOSE statement is executed, bit 6 is
used to toggle the flip-flop back low and
gate the printer off once again. This is
necessary in order to prevent the printer
from remaining on line after an OPEN or
CLOSE, which can certainly give
strange behavior when communicating
with a disk drive. Figure 6 illustrates the
timing diagram for the interface and
should make the functional operation of
the interface easier to understand.

Figure 7 is a wiring layout for the
printer interface. The circuit is con­
structed on a small piece of PC board
with one side being a 24-pin edge
duplicating the physical IEEE port of the
PET/CBM. The other side of the inter­
face box contains a 24-pin edge connec­
tor which plugs onto the computer IEEE
port. The IEEE bus signals are passed
through the box, allowing the PET-IEEE
cable to be used with the interface as it
was used with the computer. I used a
spare 15-pin D connector for attachment
to the printer. The 5-volt supply to
operate the circuit was obtained from
the cassette interface at the rear of the
PET/CBM.

Final Comments

As I mentioned, this PET/CBM IEEE
to parallel printer has worked well for
me using an Integral Data System Paper
Tiger with my CBM system, as well as
with a PET. However, let me warn of
some potential problems and limita­
tions. First of all, the interface does not
transmit the last character of the data to
be printed. This is not a particularly
troublesome problem if the computer
transmits a carriage return and a line
feed, and the printer functions with only
a carriage return. The PET I have sends
both a carriage return and a line feed.
However, the CBM 8032 sends the line
feed only if the file number is 128 or
greater. This could lead to some editing
of existing programs to change file
numbers so that a line feed is sent.
Alternatively, additional hardware
could be added so that the 7470 clear

No. 39 - August 1981 MICRO - The 6502/6809 Journal 55

+ 5V Figure 7: Wiring layout for Interface circuit In figure 5.

1 14

2 13

3
7

12

4 4
11

5
0

10

6
5

9

7 8

OAV

NDAC

ATN

_BUSY

NRFD

STROBE

14

13

7 12

4 11

1 10

0 9

8 D1

—.
1 14

EOI
2 13

DIO 7 7
3 12

DIO 5__ 4 4 11

DIO 3
5 7 10

------ 6 0 9

7 8

J
DIO 5

D5 —

DIO 6 —

D6 —

DIO 7

D 7 -

_ DIO 2

- D2

- D IO 3

----- D3

- D IO 4

-D 4

GND

line is set low on the positive-going edge
of the EOI signal. You must decide if the
inconvenience is worth the additional
hardware.

An additional area where a problem
might arise is the device address
decoding. Should additional IEEE
devices such as a modem be attached to
the bus, care must be exercised to en­
sure that none of the addresses are

decoded by this circuit. For instance,
any device whose address contains bit 2
will output to the printer; thus 4, 5, 6,
and 7 are device addresses which will
gate the printer on. Once again, addi­
tional hardware can be added to provide
complete decoding.

One final point of caution concerns
the handshake implementation. The
pull-down resistor on the busy line

allows the IEEE bus to operate with the
printer turned off or disconnected from
the interface. However, this imple­
mentation rather defeats the benefits of
having handshaking, in that complete
handshaking with the computer occurs
even when the printer is not present. I
much prefer to be able to use my disk
drive with the printer turned off and
don't consider it much of a shortcoming.

JMCRO

Your Pascal too slow?
Not anym ore...

with rhe PASCAL SPEED-UP KIT, which includes THE MILL: the easiest
way to give your Pascal system a tremendous performance boost.

Here is how it works:
1) Plug in THE MILL
2) Run our configuration program one rime
3) That's all

You now have o 30 to 300% foster Pascal P-machine, and you
don't have to recompile, reprogram or relink, FORTRAN users may
also rake advantage of THE PASCAL SPEED-UP KIT. Contact your
local Apple dealer for more information.

"Coming June 1, 1981 to your local Apple dealer''
THE ASSEMBLER DEVELOPMENT KIT

STELLATION TWO makes available the fools necessary ro take full
advantage of THE MILL. Enter the world of true MULTIPROCESSING
with THE PASCAL SPEED-UP KIT and THE ASSEMBLER DEVELOPMENT
KIT, available only from STELLATION TWO.

THE MILL transforms rhe 8-bit Apple II
info a computer ttiar acts like a

16-bit machine. THE MILL has
unique hardware features that

permit the 6809 ro run ar full
speed (1 megahertz) and

allow the 6502 to tun at
20% of its normal

speed —
AT THE SAME TIME!

Find our about
THE M ia and get
involved with the
hottest item on the
personal computer

market today.
No existing personal com puter'
can give you the power,
performance and priceofTHEMILL'S

6809-6502 combination.

Apple II
is a trademark

for Apple Computer, Inc.

JBON
rO

P.O. BOX2 3 4 2 - Nl
SANTA BARBARA, CA. 93120
(8 0 5) 966-1140

56 K/HCRO - The 6502/6809 Journal No. 39 - August 1981

An Inexpensive Printer
for Your Computer

Even the very low budget
computer hobbyist can have a
printer to list his programs and
data. Described here is an
inexpensive printer mechanism
and how it works. A simple
circuit and software are
included that will allow this
printer to be interfaced to your
6502’s parallel I/O port.

Photo 1: The printer mounted on the box containing the Interface circuit and power
supply.

Michael J. Keryan
713 Locust Drive
Tallmadge, Ohio 44278

Many computer hobbyists have no hard
copy output device. The main reason is
the price of printers; all but a few cost
nearly as much as the computer itself.
This is a shame, since much time is
wasted copying programs and data back
and forth from paper to keyboard, to
CRT display, to paper. In this article, a
printer, interface circuitry, and 6502
driver software are described. Assuming
you have a microcomputer with a PIA
and 768 bytes of spare memory, you can
add this printer to your microcomputer
for about fifty dollars.

The printer mechanism is a Sharp
DC-1606A, recently offered by an elec­
tronics surplus dealer, (John Meshna Jr.,
of Lynn, Mass.), for $20. The printer
uses aluminized paper and gives printed
copy similar to Radio Shack's $219.00
Quick Printer II. Although not accept­
able for some applications, the print is
readable and useful for program and data
documentation and output of programs
such as checkbook balancers. The soft­
ware given will print 96 characters (up-
;per and lower case) in a five by eight
inatrix. The character widths are
variable from five or less characters per
line (for headings) to a maximum of
forty-two characters per line.

How the Printer Works

The paper is coated with a very thin
layer of aluminum, which can be burned
away by electric current, leaving an
almost black surface. The print head
consists of a vertical column of eight
elements that are in physical contact
with the paper as the head traverses
from left to right. If a sufficient current
source is applied to the conductive
aluminum surface of the paper, pro­
viding a ground through which the
elements will bum away the coating, a
black dot or line will be produced. Any
desired character can thus be formed by
turning each of the eight elements on
and off at the right times.

An open loop system with character
widths being a function of a timing
pulse would be the simplest way to get
the dots to form characters, but this is
not practical. The horizontal speed of

the print head is not constant and an
open loop system would give unequal
character widths. However, a feedback
system is extremely simple to interface,
using the strobe systems in the printer
mechanism. Assuming the motor is
turned on and the print head is in the
process of printing a line of text, the
head travels from left to right across the
paper. At the right margin, the print
head is automatically lifted from the
paper surface and the head then moves
from right to left. During this motion,
the platen also indexes the paper to the
next horizontal line position. Therefore,
carriage return and line feed occur after
each line. At the left margin, the print
head is lowered to the paper surface to
begin the left to right scan for the next
line. This is shown in figure 1.

Within the print mechanism are two
strobe wheels, which can block light
paths between lamps and associated

No 3 9 -August 1981 MICRO - The 6502/6806 Journal 57

Figure 1: Motion of the print head to form a printed line with automatic
carriage and line feed.

Left margin

Line strobe
transistor
will turn on,
denoting
correct position
to start print

Right margin

Linefeed

Line strobe transistor
will turn off, denoting
correct position to
turn off »otor

photo-transistors. The line strobe wheel
begins to allow the light to turn on the
line strobe transistor at the left margin,
as the print head is moving toward the
right. A transition in this transistor from
off to on denotes the beginning of a line.
The transistor remains on until mid-
position in the carriage return. A transi­
tion of. the transistor from on to off
denotes the proper position to turn off
the motor when printing one line. The
print head will then remain in this posi­
tion until another line is ready to be
printed.

The character strobe is similar to the
line strobe but contains many more lujs
on a faster spin n in g wheel. The
character strobe photo-transistor out­
puts a square wave of approximately 126
pulses as the print head moves to the
right between margins. Although the
pulse width is not constant as a function
of time, it is constant as a function of
movement of the print head. Therefore,
turning the printhead elements on and
off at the right time is merely a matter of
synchronizing the output signals to the
character strobes. Character widths can
be varied by allowing varying integral
half-cycles of the character strobe to
represent a vertical column. Horizontal
spacing between characters can be
varied similarly. The right margin is
located by counting the character strobe
pulses, or alternately by counting the
number of character spaces and adjust­
ing the maTimum number of characters
for the pulse count per character.

Line character width will be deter­
mined by vertical column width and
spacing between characters. Using five-
by-eight matrices for the characters [five
vertical columns, each eight segments
high) and assuming that the column

widths for spacing are equal to the
printed column width, the maximum
number of characters per line can be
represented as a function of width and
spacing:

where C = number of characters/line,

W = number of half cycles of
character strobe per vertical
column, and

S - number of blank vertical col­
umns after each character.

Some examples of print size are shown
in table 1. In general, line lengths of
from sixteen to twenty-one characters
can be considered normal. Line lengths
shorter than sixteen might be used for
headings, while those larger than
twenty-one would result in narrow,
closely spaced characters, which are dif­
ficult to read without inserted spaces.
The print mechanism also contains
several microswitches and other
features, best described in conjunction
with the interface circuit.

The Interface Circuit

The interface circuitry is shown in
figure 2. It can be used to interface the
printer to a PIA, VIA, or TTL input/out­
put port. (A PIA was used in the proto­
type.) Eight output bits are required for
the print head and one output bit drives
the motor control circuit. Also required
are four input bits for feedback to the
computer. The numbers shown at the
connection points between the printer
mechanism and the interface circuit
refer to the numbered pins on the edge
connector provided with the printer.

Table 1: Variation In print size. Listed
are values of C (Number of characters/
line), W (Width = number of half
cycles of character strobe/vertical col­
umn), and S (Space = number of blank
vertical columns following character),
followed by one line of text at that
spacing.

€ j i

m m M m m r n m M m }

l i j 2

a j .

l i I J

2 1 2 1

R B C D E F G H lJ K L n H O P Q R S T L

1 8 2 2

As already described, a positive
voltage is applied to the paper surface. A
return to ground through the transistors
will result in a printed dot or line. The
transistors are driven by inverter sections
of-ICl and IC2 |4049's). These CMOS
IC's are ideal for this use since they are
compatible with five volt MOS or TTL
levels, and are virtually indestructable.

The positive voltage at the paper sur­
face is sampled by two elements. When
the paper runs out, the voltage at these
pins will drop to zero. These pins are
connected through protection and noise
elimination networks to pins 11 and 12

58 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

PRINTER BONUS

— O -

•d
c
pou
o

«P r-t w r'l
§ u o oM M H2:

3
2

0
o
0
r

CM

Sa
o»

o h m c c t P.
• f c ° S H | r ss n »H j : jj •o * P-x 0

«

c

!
«

b
c
A

r 4
n o g

SK«

^ N
O M PQ A,

VO
£

A
tofit £>

CU
03
0*

fw
2

0
■ i*
p»

No. 39 - August 1981 MICRO - The 6502/6809 Journal 59

of IC3. This nand gate has two more in­
puts. Pin 9 is connected to a normally
open switch within the printer, that
closes a circuit to ground when the print
head is manually lifted from the paper
by sliding back the plastic guard. Pin 10
is connected to SI, a normally open
SPST switch added to the interface. Zero
volts on. any of these inputs will cause
the output of the nand gate, connected
to PA7, the status bit, to go high, in­
dicating some sort of problem. SI is also
connected, to PA4, useful as a paper ad­
vance (line feed) request.

The motor runs well at 5 volts, but
not at 4. 5 volts. Therefore, a reed relay
is used to switch the 5 volts to the
motor. An electrolytic capacitor is added
to the motor connection to slightly slow
down the transition from five to zero
volts, removing the need for noise
elimination near the cross-over point of
the line strobe. PA3 drives the motor
control circuit, buffered through an in­
verter and transistor. A zero volt level
on PA3 will turn on the motor.

The lamps and the collectors of the
strobe transistors are connected to the
+ 5 volts. The emitters are brought to
ground through 68Kohm resistors. The
voltages generated across these resistors
are buffered by CMOS inverters. The
outputs of these inverters are pulled to
ground through 10K resistors and are
connected to PA6/PA5 for the
character/line strobes, respectively.
These resistors ensure the outputs to be
at a zero volt level when no power is
applied to the interface circuit.

The power supply, shown in figure
3, is very simple and needs little ex­
planation. The transformer can have an
output voltage of ten to thirty volts.
Higher voltage will give darker print but
will require a higher voltage rating for
the 2000uF capacitor and more heat
sinking for IC4, the voltage regulator.
The prototype circuit used a twelve volt,
one amp transformer.

PAO, PA1, and PA2 are not used. If
desired, they could be configured for in­
creased input/output control. One use
would involve circuitry to control the
power supply, by replacing S2 (the
power switch) by a relay or solid-state
switch.

The Software

The software shown in listing 1 was
written for a 6502-based OSI C2-4P, but
will require only minor modifications
for other 6502 computers. A buffer area
of programmable memory is required to
hold one line of characters before print­
ing. The beginning of the buffer is set to

Listing 1:6502 matrix print routine.

;* INEXPENSIVE PRIBreR DRIVER

1* BY M.J. KEtOAN

T.TMTJM EPZ $EO •NO. characters/line

WIDIH EPZ $£1 •NO. FULSES/OCUMJ
SPACE EPZ $E2 * BLANK OCL./CHAR.
CHBOJT EPZ $E3 •character aowr
STBCBE EPZ $E4 •CHAR. STOCBB FLAG
T B & EPZ $E5 •UMP. REGISTH*
TWLEA EPZ $E6 •OGUM? 1 VECTOR (LO,Hl)
TMLfB EPZ $E8 •OCUMT 2 VECTOR
TM U C EPZ $Eft •axu-tt 3 VECTOR
T H U S EPZ $EC •OCXIM? 4 VECTOR
TMLEE EPZ •CCIIMJ 5 VECTOR

OJFFER EQU $D3C4 •CHARACTER STORAGE

BUFEf® BQU $D3FF E2D CF BUFFER

7
PIADA BQU $F700 DATA REGISTER A

PIACA EQU $F701 OCtflROL REGISTER A
PIACB EQU $F702 EMA RBGISIHl B
PIACB BQU $F703 (XSriHJL REGISTER B

CSG $8000

8000 48 PRTOUT PHA ;SAVE OCLLttf
8001 A5E1 LDA WIDIH IS WIDIH =0?
8003 F011 BBQ SUBCOT ?YES, KETUIV
8005 85E5 STA TEMP SAVE WIDTH
8007 AD0CF7 WAIT IDA PIADA CHECK CHAR. STROBE

80QA 2940 AMD #%01000000 MASC
800C C5E4 0*> SIKBE SAME?
800E F0F7 BBQ tN T YES, LOOP AND WAIT
8010 85E4 STA SftHJBE NO, RESET FIA3
8012 C6E5 CBC TTMP WIDHMffDIH-l
8014 D0F1 ENE WAIT LOOP IF <>0

8016 68 SUBCOT PIA KECAli OCUJW
8017 8D02F7 PIACB cutout IT
801A 60 RTS RETWW
801B AD0GF7 LBEET U A PIADA OmCK LUB STROBE
801E 2920 AND #«00100000 MASK FOR LINE STTCBE
8020 60 RTS RETURN
8021 85E5 PRIMM STA TBIP SAVE CHARACIHt
8023 48 PRINTS PHA SAVE FOR REIXJFN
8024 8A TXA SAVE X REGISTER

8025 48 PHA
8026 98 TXA ?SAVE Y REGISUR
8027 48 PHA
8028 A2FF U K #$IY
802A A900 U3A #$00
802C 8D01F7 STA PIACA DATA DIRECTION A

802F 8D03F7 STA PIACB DATA DIRECTICK B
8032 85E4 S1A STBCBE HOT. STTOE FLAG
8034 A908 LDA *«00001000
8036 8D0CF7 S3* PIADA MOTOR BITKVT
8039 8E02F7 SIX PIAEB pruhheaixxtt

803C A904 LDA #$04
803E 8D01F7 OTA PIACA ?DMA KEBISTHl A

Figure 3: Power supply for printer and Interface.

60 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

Listing 1 (Continued)

8041 8D03F7 SEA PIACB 7 DATA RBGISld B
8044 8E0CF7 SIX PIACA 7MOTOR OFF
8047 8E02F7 SIX PIAEB ;PRHnHEAD OFF
804A A20A U K #$QA ;TOUSFBl TABU
804C BDF680 TRANSF LDA ROMTAB,X .•POINTERS TO PAGE
804F 95E6 _STA TABLEA,X 7 ZERO iccsor
8051 CA □ex
8052 D0F8 ENE TRANSF ;DCNE7 IF SO,
8054 201880 jsr Lmcer ;IS POWER CM?
8057 F004 BEQ our ;IF NOT, RETTOFN
8059 A5E0 U A T.MB1 ;O.K. ,IS UffitUH)?
805B D002 ENE CHKSTP ?NO, acmNUE
805D F027 CUT BEQ RETK/T 7OTHE3WISE RETORT
805F AD00F7 CHKSTP U A PIACA ;CBBCK STATUS
8062 101A BPL BUHD ;IF O .K ., BRANCH
8064 2910 AID #100010000 7PAPER ADVANCE?
8066 D0F7 ENE CHKSTP 7 NO, THBI WAIT TUX, O.K.
8068 A900 IDA # $ 0 0
806A 8DOOF7 STA PIACA ?TOTO CN MOTOR
806D 201B80 IflFDA JSR LUCET 7 CHECK LINE STROBE
8070 DOFB m E UffCA ;WAIT IF <>0
8072 201B80 LNETB JSR LINCET ; CHEEK T.TNE SIHJBE
8075 FOFB BBQ IHFEB 7 WAIT IF -0
8077 A908 IDA #*00001000 ;LINEFEED OCMP££IE,
8079 8D00F7 STA PIACA ;ST0P MOTOR
807C D0E1 ENE OBCSTP ;RK3fflOC STATUS
807E A5E5 BUIID U A TB4P ;GET ASCII CHAR.
8080 297F AND #%01111111 ;MASK OFF HI® BIT
8062 C90D CMP #$0D jCAFRIWSE RETOFN?
8084 F013 BBQ FIU j 7 YES, FTUi BUFFER
8086 C920 KETRL7T CMP #$20 jIZGITIMA3E CCCC?
8068 3063 EMI RETURN ?IF NOT, RETURN
806A A6E3 U K CHRQJT ;CURRB7T BUFFBl 121.
808C 9DC4D3 STA BUFFO*, X ;ADD CHAR. TO BUFFER
806F E6E3 INC CHRQJT 7 NEW BUFFER U2K7IH
8091 A5E0 U A LTNTfN ; MAXIMUM LBK3IH
8093 C5E3 CMP CHRCNT ;IS BUFFER HILL?
8095 FOOE BEQ UNCUT 7YES, OUITOT LINE

8097 DO54 BNE RETOPN 7NO, IHQf RE!TORN
8099 A6E3 FUX U K CHRCNT 7 CURRENT BUFFER LQJ.
809B A920 U A # $ 2 0 7ASCII SPACE
809D 9DC4D3 LOOPFL STA BUFFER, X 7 PLACE IN BUFFER
8CA0 EG INX ;NBCT DDCATICN
8GA1*E4E0 CPX T.TNTJK ;ia st?
80A3 D0F8 ENE LOOPFL 7NO, CCOTINUE
8GA5 A200 Lmxrr u k #$oo 7 START LINE OUITOT
80A7 8E0QF7 SIX PIADA ,-TUFN CN MOTOR
8QAA A003 U X #$03 7 LOOP C3XNTTO
8GAC 201B80 LNDT JSR LINDET 7 CHECK LINE STOOBE
80AF DOFB ENE I2ET 7 WAIT T IIM)
8C81 8 8 CCT ;REPEAT 3 TIMES
80B2 D0F8 ENE LNDT 7 SO YOU ARE SURE
80B4 BOC4D3 LOOPOU U V BUFFER, X ?®T CHARACTER
80B7 B1E6 U A (TABLEA),Y i ooce
80B9 200080 JSR PRTOUT ;0OTTOT IT
80BC B1E8 LEA (T*BLEB),Y ;CCUMT 2 OOCE
80BE 200080 JSR PRICUT 70UTEUT IT, ETC.
80C1 B1EA LCA (T*BLBC),Y
80C3 200060 JSR PRTOUT
80C6 BIBC Lift (TABLED),Y
80C8 200080 JSR PRTOUT
80CB B1EE U A (TABLE),Y
80CD 200080 JSR PFTOUT
80D0 A4E2 UJY SPA£Z 7NO. OF BLAIR OOUMJS
8CD2 A9FF LOOPBL U A #$FF 7BLANK COCC
80D4 200060 JSR PRTCtTT 7OUTPUT BLAMC OCL.
80D7 8 8 CCV 7DCNE?
80D8 D0F8 ENE LOOPBL 7NO, DO IT A3AIN
SODA E8 INX 7 NEXT CHARACTER
80DB E4E0 CPX LINLfft 7 IS THAT All,?
80DD D0D5 ENE LOOPCUT 7NO, LOOP & OCNTINUE
8CCP 201880 CRU JSR I.TNDFT ;Q1BCK T.t w r STOOBE
80E2 FOFB BBQ CRLF ; IF -0, WAIT
8CC4 A908 U A #%00001000
8GE« 8DOOF7 STA PIADA 7 STOP MOTOR
80E9 A900 U A #$00
80EB 85E3 SIA CHRQ7T 7RESET CHAR. COURIER
80ED 68 RETORN PLA 7RESTORE REGISTERS
8CEE AS TOY
80EF 68 PIA

8QF0 AA TAX
80F1 66 PEA
80F2 60 RTS

80F3 EA NOP
80F4 EA NOP
80F5 EA NOP
8GF6
80F6 E060 RCMEAB ADR $80E0 7 TABLE POINTERS WILL BE
8QF8 4061 ADR $8140 7 TRANSFERRED TO PAGE ZERO
SOFA A081 ADR $81A0 ; MEMORY BY PROGRAM
8CFC 0062 ADR $8200
80FE 6062 ADR $6260
8100

$D3C4, which in my OSI system corre­
sponds to the unused lower two lines of
the video refresh memory. This allows
the buffer to be viewed on the CRT prior
to printing. Also needed are sixteen
bytes of page zero programmable
memory, located at hexadecimal loca­
tions 00E0-00EF, also not used by OSI
routines. Three of these must be set up
prior to calling the print subroutine.
They can be changed between lines if
desired, but must all be greater than
zero:

$OOEO
$00E1
$00E2

(C) = number of characters/line,
(W] = width of vertical column,
jSJ = spacing, number of blank
columns / char acter.

Locations $00E3-$00E5 are tempo­
rary registers. Locations $00E6-$00EF
are pointers to the character decoding
tables. These are written from the upper
ten bytes of the 256-byte program each
time the program is called, so they can
be used for other purposes between call­
ings of the print subroutine. The PIA is
configured at locations $F700-$F703, as
on the OSI 500 CPU board. The program
itself is located at $8000-$80FF, and the
character decode tables start at $8100,
shown in listing 2. There are actually
five of these tables, each 96 bytes long,
the first table corresponding to vertical
column one of ASCII characters
$20-$7F, the second table corresponding
to the second vertical column, etc. To
fill out the last page, a screen clear pro­
gram starts at $82E0; this is useful only
for OSI systems.

The main program is commented
and therefore little explanation is
necessary. There are two entry points. If
the character to be printed is in the ac­
cumulator, enter the program by a JSR
$8021. If the character is not in the
accumulator, it should be written into
$00E5 by either a machine language
routine or a BASIC POKE statement,
then the program entered by a JSR
$8023. The subroutine will restore all
registers before returning. To modify the
program to other 6502 configurations,
only the three-byte instructions and the
table pointers |upper 10 bytes) will need
to be changed.

When entered, the program initial­
izes the PIA and the strobe flag, then
copies the table pointers to page zero. It
then checks to see if the power to the
printer is on and if the carriage is in the
correct position. If not, it will then
return. Next, it checks the status bit. If
not OK, it will then check to see if paper
advance is requested (by a closure of SI).
If so, it will line feed until SI opens. If
not, it will wait until the status is OK.

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 61

The high bit of the character is then
masked off and it is checked. If it is a
carriage return [$0D), the remainder of
the buffer will be filled with blanks
($20) and a line of text will be output. If
the ASCn code is not legitimate (less
than $20), it will then return. Other­
wise, it will add the character to the buf­
fer and check to see if the buffer is full. If
full, it will output a line; otherwise, it
will return. Note that nothing is printed
unless the buffer is full or the character
is a carriage return.

In my system, the printer routine is
called every time a character is output to
the cassette tape port. This was accom­
plished by a jumper from the UART
TDS (pin 23) to the NMI bus line. The
following code is entered at the NMI
vector: $0130.

$0130 20 21 80 JSR $8021
$0133 40 RTI

For a C1P, the same thing can be ac­
complished by merely changing the out­
put routine vector (located at $021A-
$021B) to point at the following code:

20 21 80 JSR $8021
4C 69 FF JMP $FF69

The printer routine will then be ex­
ecuted prior to the normal output
routine. In either case, a change in $E0
from a zero to a non-zero value will
enable the print routine. When in the
SAVE mode, everything on the CRT will
be printed. Alternately, a BASIC USR
call can print selected material.

Either programmable memory or
erasable read-only memory can be used
for program storage, but read-only
memory is much more convenient.
There is an additional benefit to having
the character code conversion table in
memory. All your other programs can
then have access to the codes, for large
titles on your CRT, or whatever.

The program in listing 3, written in
OSI BASIC, will demonstrate the 96
characters on the CRT display; these
codes are illustrated in table 2.

Notes on Construction

The prototype was built on a small
breadboard with a dual 22-pin edge con­
nector, available at Radio Shack. After
cutting a few notches on this connector,
it will fit the edge connector of the
printer perfectly. Since all signals are
fairly low frequency, parts placement on
the board is not critical. I used point-to-
point wiring using pre-cut wire-
wrapping wire. Use a low wattage

Listing 2: Hexadecimal character code conversion table.

- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -A -B - c -D - E - F

8100 F F F F F F D7 DB 3B 9 3 F F C 7 F F BB E F F F E F F F FB
8 110 8 3 F F B 9 7B E 7 I B C 3 7 F 9 3 9D F F F F E F D7 F F B F
8 1 2 0 8 3 C l 01 8 3 01 01 01 8 3 01 F F FB 01 01 01 01 8 3
8 1 3 0 01 8 3 01 9B 7 F 01 0 7 01 3 9 3 F 7 9 01 B F 7D F 7 FD
8 l 4 0 F F E 3 0 1 E 3 E 3 E 3 F F c ? 01 F F F F 01 F F C l C l E 3
8 1 5 0 8 0 C 7 C l ED DF C 3 C F C 3 DD F F DD F F E F 7D F 7 0 0

8 1 6 0 F F F F I F 01 AB 3 7 6D F F BB F F D7 E F FD E F F F F 7
8 1 7 0 7 5 BD 7 5 7D D7 5D AD 7 1 6D 6 d F F FD D7 D7 7D 7 F
8 1 8 0 7D B 7 6D 7D 7D 6 d 6 f 7D E F 7D FD E F FD B F DF 7D
8 1 9 0 6 f 7D 6 f 6D 7 F FD F B FB D7 DF 7 5 01 DF 7D E F FD
8 1 A 0 BF DD EB DD DD D5 E F BA DF ED F E F 7 7D DF DF DD
8 1 B 0 D7 BB E F D5 DF FD F 3 FD EB C2 D9 E F E F 7D E F 0 0

8 1 C 0 F F 0 5 F F D7 01 E F 9 5 I F 7D 7D 01 8 3 F 3 E F FD EF
81 D 0 6D 01 6D 6D B 7 5D 6D 6 f 6D 6D D7 D3 BB D7 BB 6 5
8 l E 0 4 5 7 7 6 d 7D 7D 6 d 6 F 7D EF 01 FD D7 FD CF E F 7D
8 1 F 0 6 f 7 5 67 6 d 0 1 FD FD E 7 E F E l 6D 7D E F 7D DF FD
8 2 0 0 5 F DD DD DD DD D5 81 BA DF A1 F E E 7 01 E l DF DD
8 2 1 0 BB BB DF D5 81 FD FD F B F 7 FA D5 9 3 AB 9 3 E F 0 0

8 2 2 0 F F F F I F 01 AB D9 FB F F F F BB D7 E F F F EF F F DF
8 2 3 0 5D FD 6 d 4 d 01 5D 6D 5 F 6D 6 b F F F F 7D D7 D7 5 F
8 2 4 0 6 5 6 7 6D 7D 7D 6 d 6 F 7 5 E F 7D FD BB FD BF F 7 7D
8 2 5 0 6 f 7B 6 b 6 d 7 F FD F B FB D7 DF 5D 7D F 7 01 E F FD
8 2 6 0 B F EB DD DD EB D5 6 F D6 DF FD A1 DB FD DF DF DD
8 2 7 0 BB D7 DF D 5 DF FD F 3 FD EB FA CD 7D E F E F E F 0 0

8 2 8 0 P F F F F F D7 B 7 B 9 F 5 F F F F C 7 BB E F F F E F F F BF
8 2 9 0 8 3 F F 9D 3 3 F 7 6 3 7 3 3 F 9 3 8 7 F F F F F F D7 E F B F
8 2 A 0 8D C l 9 3 BB 8 3 7D 7 F 7 1 01 F F 0 3 7D FD 01 01 8 3
8 2 B 0 9 F 8 5 9D B 3 7 F 01 0 7 01 3 9 3 F 3D 7D FB 01 F 7 FD
8 2 C 0 F F C l E 3 DD 01 E 7 F F 8 1 E l F F F F BD F F E l E l E 3
8 2 D 0 C 7 8 0 F F DB DF C l C F C 3 DD C l DD 7D EF F F DF 0 0
8 2 E 0 4 8 9 8 4 8 A 0 0 0 A 9 2 0 9 9 0 0 D3 9 9 0 0 D2 9 9 0 0 D1
8 2 F 0 9 9 0 0 DO C 8 DO F I 6 8 A8 6 8 6 0 UB 6 5 7 2 7 9 61 6 E

Listing 3: Character demonstration program In BASIC.

1 0 REM CHARACTER
1 5 REM DEMO

2 0 REM BY M .J. KERYAN
2 5 :
3 0 IS = 5 3 6 1 2 : REM CORKER

3 5 TA = 3 2 9 9 2 : REM TAELE-32
4 0 CU = 5 4 1 1 6 : REM CURS LOC

4 5 B1 = 3 2 : B2 = 1 2 7
5 0 FOR C = IS - 6 6 TO IS - 5 8
5 5 POKE C,B2: POKE C + 3 2 , B1
6 0 POKE C + 3 2 0 , B l: POKE C + 352 ,B2
6 5 NEXT : PCKE I S - 3 4 , B2: POKE IS - 2 6 , B2
7 0 FOR C = IS - 2 TO IS + 2 2 4 STEP 32
7 5 POKE C,B2: PCKE C + 1 ,B 1
8 0 PCKE C + 7 ,B 1 : POKE C + 8 ,B 2
8 5 NEXT : POKE IS + 2 5 4 , B2: POKE IS + 2 6 2 , B2
9 0 FOR CR = 3 2 TO 1 2 7

9 5 POKE CU,CR (Continued)

62 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

soldering iron and sockets for the CMOS
IC's. None of the resistor or capacitor
values is very critical. All transistors
should be high gain, high current types,
such as 2N3643, 2N4401, etc. The
unused input pins of IC3 should be
brought to either 5 volts or ground.

The circuit board, switches, and
transformer were mounted in a Radio
Shack plastic box (item #270-224). The
printer was mounted on top, using rub­
ber stand-offs. The paper holder was
made from a piece of aluminum formed
into a U-shape. A cut-down toilet tissue
holder was mounted on the support.
Before connecting the interface to the
printer, the interface should be powered
up and checked out by bringing all in­
puts to 5 volts or ground, and monitor­
ing the corresponding outputs. Then
connect the printer, turn it on, and
check out the motor by switching the
line marked PA3 to ground.

Comments on Use

If out of paper, pull the plastic guard
up and lock the metal lever up to loosen
the platen. Feed the end of a new roll
from the back, release the metal lever to
tighten the platen against the paper, and
close SI. The paper will then advance as
long as SI is closed. After opening SI,
flip the plastic guard back into position
and the printer will continue normal
operation.

The printer should only be turned on
after the computer is powered up.
Likewise, the printer should be turned
off before the computer. Failure to
follow this sequence will turn on the
motor, due to a low voltage at PA3. The
reason for this configuration is that
before the PIA is initialized, all outputs
will be high.

When printing tables, it is sometime
advantageous to change the spacing
parameters between lines. This was
done in table 2, in which three different
configurations were used.

M ichael Keryan has a Master of Science
degree in Chemical Engineering, and has
used computers in school, and for the last
eleven years in industrial applications. His
hobby has been electronics and, most
recently, microcomputers; his interests are
equally divided between hardware,
software, and systems. To keep the cost of
his hobby within reason, he prefers to

Ibuild everything himself. This article is
S h e result of one such project.

JMCftO

Table 2: Character set. The tables In
listing 2 define 96 characters. These
are the standard ASCII symbol, upper
case, and lower case characters, ex­
cept for a degree symbol (for hex­
adecimal 60) and a divide symbol (for
hexadecimal 7C).

Listing 3 (Continued)

1 0 0 GOSUB 1 2 5
1 0 5 FOR DE = 1 TO 2 5 0 : NEXT DE
1 1 0 NEXT CR
1 1 5 END
1 2 0 : RIM SUBROUTINE

1 2 5 : REM PLOTS CHAR'S
1 3 0 FOR J = 0 TO 4
1 3 5 JN = J * 9 6

1 4 0 X = PEEK (CR + TA + JN)
1 4 5 FOR N = 7 TO 0 STEP - 1
1 5 0 P = 2 A N

1 5 5 L = IS + J + 3 2 * (7 - N)
1 6 0 IF (X AND P) > .5 THEN POKE L,B1: GOTO 1 7 0
1 6 5 POKE L,B2

1 7 0 NEXT N

1 7 5 NEXT J

1 8 0 RETURN

The MICRO Software
Catalog (pages 104,
105) presents a listing
of unique software that
is available through a
wide network of
vendors. These
announcements are
run free of charge, but
limited to only one per
company, each month.

If you have a software
package you’d like to
announce to MICRO’S
readers, send for an
application form.
Complete details will
be provided.

Software Catalog
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA
01824

No. 39 - August 1981 MICRO - The 6502/6809 Journal 63

NIKROM TECHNICAL PRODUCTS PRESENTS
A DIAGNOSTIC PACKAGE FOR THE APPLE II

AND APPLE II + COMPUTER.
“ TH E B R A IN SURGEON”

A p p le C o m p u te r C o . h a s p r o v id e d y o u w i th t h e b e s t e q u ip m e n t a v a ila b le t o d a te . T h e
D ia g n o s t ic 's P a c k a g e w a s d e s ig n e d t o c h e c k e v e ry m a jo r a re a o f y o u r c o m p u te r , d e te c t e r ro rs ,
a n d r e p o r t a n y m a lfu n c t io n s . The B ra in S urge on w i l l p u t y o u r s y s te m t h ro u g h e x h a u s t iv e ,
t h o r o u g h p ro c e d u re s , t e s t in g a n d r e p o r t in g a l l f in d in g s .

The Tests Inc lud e :
• MOTHERBOARD ROM TEST
• APPLESOFT ROM CARD TEST
• INTEGER ROM CARD TEST
• MOTHERBOARD RAM TESTS
• DISK DRIVE SPEED CALIBRATION
• DISK DRIVE MAINTENANCE
• DC HAYES MICROMODEM II TEST

(HARDWARE & EPROM)
• MONITOR & MODULATOR ROUTINES
• MONITOR SKEWING TESTS
• MONITOR TEST PATTERN
• MONITOR TEXT PAGE TEST

• MONITOR 4 TV YOKE ALIGNMENT
• LO RES COLOR TESTS
• HI RES COLOR TESTS
• RANDOM HI-RES GENERATOR
• SPEAKER FUNCTION TESTS
• SQUARE WAVE MODULATION
• PADDLE & SPEAKER TEST
• PADOLE * BUTTON TEST
• PADDLE STABILITY
• INTERNAL MAINTENANCE
• GENERAL MAINTENANCE
• ON BOARD "HELP"

T h e B re k t S urgeon a l lo w s y o u t o b e c o n f id e n t o f y o u r s y s te m . T h is is a s c r i t i c a l a s th e
o p e r a t in g s y s te m it s e lf . Y o u m u s t d e p e n d o n y o u r c o m p u te r 1 0 0 % o f i t 's ru n n in g t im e . The
B n tn S urge on w i l l m o n ito r a n d h e lp m a in ta in a b s o lu te p e a k p e r fo rm a n c e .

Supplied on diskette with complete
documentation and maintenance guide.

PRICE: 146.95
REQUIRES: 46K. FP in ROM
1 Disk Drive. DOS 12 or 3.3

' Nlkrom Technical Products
2S PROSPECT STREET • LEOMINSTER, MA 01453

O rder Toll-Free Anytm e
Master Charge & VISA users call: 1-800635-2246
Kansas Residents call: 1-800-362-2421 APPlt 4 tofSIKM

IP SERIAL NUMBER IS 0ELOW 20.000 OR DATEO 8EFORE 2HM1, THEN RETURN OISKCTTE PLUS *7 00
U.S.. SS.00 FOREIGN

THE ultimate in SPEED and

language POWER for the APPLE H : *

TH E IN T E G E R BASIC C O M P I L E R

- SPEED IMPROVEMENT BY A FACTOR OF 10 TO 20 OVER
Apple's BASIC interpreter - 15 to 30 over Applesoft!

- No LANGUAGE CARD NECESSARY !

- Optimize code for your speed/space requirements.

- Object code and run-time system are completely
relocatable - use memory the way you want to !

- Many powerful BASIC language extensions:

- Full string length of 32767 - no 255 limit !
- CHR$, GET and KEY functions.
- Direct HI-RES graphics support.
- HOME, INVERT, NORMAL, FLASH, and more !

- Many applications - existing integer programs
can be easily converted to run on any Apple II !

- Compiler requires: Apple II (or II plus with
integer or language card), 48 K and DOS 3.3.

- Supplied on 2 disks with complete documentation.

Price: $ M9.50

Dealer I n q u ir ie s in v ite d .

(C a l i f , add 6 . S i s a le s ta x . Foreign add $ 5 .0 0 a i r m ail)

GALFO SYSTEMS 6252 Camino Verde
San Jose, CA 95119

* A pple, Applesoft, - Trademarks o f Apple Computer Co.

The ultimate A P P L E "1 copy program
COPY I I PLU S

S 3995
VERSATILE — Copy II Plus copies multiple
formats — DOS 3.2, 3.3, PASCAL,
FORTRAN, and CPM.

FAST — Copy II Plus copies diskettes in less
than 45 seconds. That’s faster than most
other copy programs. Written entirely in
ultra fast assembly language.

Search no more for that truly versatile, fast
copy program. Copy II Plus is the most
advanced copy program available for the
Apple II Computer. Compare capability,
compare speed, compare price, then call or
write to order Copy II Plus. Requires Apple II
with 48K and at least one Disk Drive.

C m m A i v m m

Software, Inc.
P.O. Box 3563
Central Point, OR 97502
(503) 773-1970

or check
Deliveries from stock. No C .O .D .’s
Apple is a registered trademark of Apple Computer, Inc.

64 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

CREATE-A-BASE

CREATE-A-BASE is a data base file management
system that enables the user to choose the number of
fields needed in a file, and add or delete fields w ith­
out disturbing any of the existing data. Once a file is
created you can perform any of 30 functions. Such as:

• Interact with WORDPRO 4, and 4 +
• Do mathematic functions on any 2 or more

fields
• Sort 650 files in only 19 seconds
• Merge any sequential file into a CREATE-A-

BASE file, and output a sequential file from
a CREATE-A-BASE file

• The report generator has the feature of user
defined fields and field width.

• Printouts can be generated by values such as,
greater than, less than, equal to or in alpha
or numeric codes.

You don't have to be a programmer to operate
CREATE-A-BASE on your COMMODORE com­
puter. It's menu driven and asks you questions at
each step as you perform any of its many functions.

WORDCHECK is a poor spellers dream come true.
Designed to interact with WORDPRO, it has 2100
root words and suffixes. In addition for the business
and scientific user it has the capacity for 900 industrial
or scientific terms which you load in yourself. You
have a total vocabulary of approximately 7500 words
at your fingertips. It simply goes through the text and
flags any words that it doesn't recognize.
WORDCHECK is the ideal program to proof your
spelling, whether it is one paragraph or a 100 page
manual. The dictionaiy is versatile, allowing the user
to add or delete words. You can design the program
with the technical terms your profession uses, even
duplicating the table and tailoring it for each person
in your office. Let WORDCHECK do the work for you
quickly and accurately.

AVAUAUU1
at your loca l CO M M O D O RE d e a le r or
d istrib u ted e x c lu s iv e ly in CANADA by

B .P .l. M icro S y s te m s , Ltd.
8 0 B a rb a d o s Blvd. ^ 14
S ca rb o ro u g h , O n ta rio M 1 J1 K 9

S p e c ia l D ea ler In tro d u cto ry P ack ag e A v ailab le

Micro Computer Industries Ltd.

1520 E, Mulberry, Suite 170 Fort Collins, CO 80524

1 - 3 0 3 - 2 2 1 - 1 9 5 5

No. 39 - August 1981 MICRO - The 6502/6809 Journal 65

m ji

Expressions Revealed,
P art 2

A ,

In this, the final part of the
series, the author presents and
discusses BASIC and Pascal
versions of a program
demonstrating the translation
process.

Richard C. Vile, Jr.
3467 Yellowstone Dr.
Ann Arbor, Michigan 48105

Expression Translation
Implemented

Listings 1 and 2 present two
demonstration programs, both of which
implement the infix to postfix trans­
lation algorithm. They allow the user to
view the process as it is carried out, by
displaying various information used by
the algorithm on the Apple n screen.
The program in listing 1 is written in
Integer BASIC, while that in listing 2 is
written in Pascal. We shall conclude the
article with a few comparisons between
the implementations and an elucidation
of the operation of the demonstrations.

The demonstration programs expect
a partially parenthesized expression as
input. The allowable operators in the
expression are as follows:

& ! = # < + - / t

Figure 1: Subroutine Hierarchy of Listing 2.

3000 1900 5QQ

^ IN T R O ^ —» ^ I N I T ^ ---------- r » ^ M A IN L IN E ^

1100

1600

^SHQWNEST^ (sHOW PREC^

^S H O W N E S t) (p u S f t) ^ SCAN ^ ^ P U L L ^ (sH OW PR Ec)

1500

450 * L 700 X . 1300

OU TPU T

1300

^CONVERT^ (OUTPUT^

where the logical operators AND, OR,
and NOT have been replaced by the
single characters &, !, and', respectively.
This makes the operation of the scanner
much simpler and removes detail from
our discussion that is not strictly rele­
vant to the translation algorithm.

The translation algorithm discussed
last month in part 1 is executed directly
upon the screen. As each character is
scanned, it is highlighted in reverse
video. (Note: if your Apple II has been
modified to display lower case, this
probably will not work.) The output
string, which is the RPN translation of

the original expression, gTows
dynamically on a separate line as the
scan progresses, and the stack of
operators grows and shrinks on yet
another line. In addition, other informa­
tion is displayed on the lower portion of
the screen:

NESTING LEVEL = = = = = = = >
CURRENT PRECEDENCE = = = >
LAST PRECEDENCE= = = = = = >
TOKEN = = = = = = = = = = = >
STACK DEPTH------------- = = = >

Each piece of information so displayed is
updated on the screen whenever it is
modified by any portion of the trans­
lation algorithm. As the translation pro­
ceeds, there are pauses to allow the
viewer to absorb the significance to the
translation of the changes that have
taken place. To cause the translation to
continue after one of these pauses,
simply press any key on the Apple II
keyboard. A more detailed version of the
demonstration in which the routines of
the translation algorithm "talk" to tht
user, i.e. print explanations of their
operation, is available from the author
(see note at end of the article).

66 MICRO - The 6502/6809 Journal No. 39 - August 1981

Figure 1 shows the calling heirarchy
of the routines used in the BASIC
implementation of the translation
algorithm fsee listing 1). It is suggested
that the user study the Pascal imple­
mentation given in listing 2 and con­
struct a similar diagram. This will give
an opportunity to compare the inner
details of the two implementations.

Some Comparisons

There are some noteworthy points
concerning the style of the two pro­
grams presented in listings 1 and 2
which bear directly on the differences
between the two languages BASIC and
Pascal. The following discussion is not
intended to be complete, but rather to
prompt the reader into further thoughts
and investigations along the same lines.

Length: The Pascal version is longer
than the BASIC version, at least in pages
of text (I did not count individual
characters). There are several reasons for
this: Pascal encourages and indeed re­
quires the programmer to provide more
information about the program, and
Pascal is much easier to read if it is writ­
ten in a "spread out” fashion. Even
though the following code would be
"legal” :

IF TOKEN = OPERAND THEN
RPNOUT(NDfrCHAR) ELSE IF
TOKEN = LPAREN THEN BEGIN
NEST := NEST + 1; GOTOXY
(25.NESTLINE); SCREEN(CLREOL);
WRITE(NEST); END ELSE IF
TOKEN = RPAREN THEN BEGIN
NEST : = NEST - 1; GOTOXY
(25.NESTLINE); SCREEN(CLREOL);
WRITE(NEST); END ELSE BEGIN
NOWP : = NEST* 10 +
PRECEDENCE[TOKEN]; SHOW
PRECEDENCE; POPSTACK(NOWP);
PUSHSTACK(TOKEN.NOWP); END;

it is extremely difficult to read and
would be considered poor Pascal style.
See listing 2 for the "acceptable” ver­
sion of the same code (in PROCEDURE
PARSE). What is the underlying reason
for this? In Pascal, statements may con­
tinue on for many lines. This example is
actually one Pascal IF statement. In
BASIC this is not the case; statements

''are limited to a single line. The conse-
Pquence is that you don’t have to be as
careful when formatting your BASIC
source programs as you do when format­
ting your Pascal programs.

The practical consequences of the
differences in length seem to be:

1. Pascal programs tend to be easier
to read, understand and modify,
but they are more difficult in
some ways to write.

2. BASIC programs, especially
shorter ones, tend to be easier to
write than the corresponding
Pascal programs. They are more
difficult to read, understand, and
modify, especially as they
become longer.

Structure; The Pascal language pro­
vides many more structuring facilities
than does the BASIC language. This ap­
plies not only to the procedural portion
of programs in which Pascal provides:

named procedures with parameters
if-then-else statement
while-do statement
repeat-until statement
for statement

but also in the declarative portion of
programs in which Pascal provides ex­
plicit structuring mechanisms to reveal
the logical relationships between
various pieces of data used. Pascal gives
us not only variables and arrays, but also:

sets
records
pointers

as well as the ability to nest instances of
these facilities, one within the other.
This leads to a notational clarity in the
representation of data, especially data
that possesses some inherent structure.
In the demonstration programs, the
operator stack provides a simple exam­
ple. In the BASIC version, the stack of
composite items of information must be
represented using separate arrays which
are maintained in "parallel.” The value
of the top of stack is kept in yet another
variable. In the Pascal implementation,
the operator stack is considered to be a
single entity. The structure of this enti­
ty is declared in the type section of the
program:

TYPE

STACK = RECORD
TOS: INTEGER;
OPS: ARRAY[Q..40l OF RECORD

OPR: OPERATOR;
PREC: INTEGER;

END:
END;

The stack is incarnated in the var sec­
tion of the program:

VAR

OPSTACK: STACK;

The OPSTACK is a single variable
whose structure is indicated by its type,
namely STACK. The various parts of the
stack may only be accessed by mention­
ing the name of the operator stack,
OPSTACK first. For example,

OPSTACK.TOS
OPSTACK.OPS[l].PREC
OPSTACK.OPS{OPSTACK.TOS].OPR

and so on. To the long-time BASIC user,
this seems like wasteful nomenclature,
but it serves at least two important
functions:

1 . It documents the use of the data
in the program for the future
reader of the program. This
documentation is directly a part
of the code itself and is "forced”
on the programmer.

2. It forces the programmer to write
in more detail, thus preventing,
in many cases, inadvertent
modification of variables, which
could lead to subtle bugs. This is
much more important in larger
programs, especially in those in
which many variables may have
identical structure. In such cases,
the use of parallel arrays requires
the invention of different names
for the pieces of each individual
variable. This proliferation of
names can easily tax the memory
of the best programer.

Game, anyone?

In the past we have rejected almost
all game articles that have been submit­
ted to MICRO. Our November issue,
however, will include a special games
bonus. If you have written an article
about an original game, w e’d like to
review it. Please send the article, along
with a tape or disk, i f possible, to:

MICRO, Editorial Dept.
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA 01824

No. 39 - August 1981 MICRO - The 6502/6809 Journal 67

Listing 1

10 DIM L IN E *< 2 5 0 >
11 DIM STACKC25)
12 DIM PRECEDENCE(2 5)
20 C L R E 0 L = -9 6 8 :K B D = -1 6 3 8 4 :CLR=

-1 6 3 6 8 :H 0M E=-936
25 i n i t = i 9 o o : p r e p r o c e s s = io o o
26 POSTPROCESS=HOO
27 INTRO=3000
28 SCAN=2500:PARSE=2000
29 ERRLINE=22 :W AIT=1200
30 0UTPUT = 1300 J0LIN E=6
31 PU SH =1400!PU LL=1450
32 s t k l i n e = i o : n e s t l in e = i 2 : n o u p l in e =

13
33 C 0NVERT=1500!LASTPLINE=14!T0KENL

IN E = 1 5 :T 0 S L IN E = 1 6
34 SHOUNEST=1600:SHOUPREC=1700

400
401

REM SET UP FOR A RUN

405 CALL HOME
410 GOSUB INTRO: CALL HOME
415 GOSUB IN IT .* REM SET UP SCREEN
500 REM M AIN LINE DRIVER
501 REM ===============
505 VTAB i : TAB i : POKE 50>63
506 PRINT ‘ INPUT EXPRESSION TO BE PA

RSED"
507 CALL CLREOL
508 POKE 50 * 255
509 PRINT ■===> ■ v
510 INPUT L IN E * !L = LE M L IN E *)
512 IF L#0 THEN 5 1 5 : TEXT ! CALL

h o m e : END
515 GOSUB PREPROCESS
520 FOR C I= 1 TO L
525 C H *= L IN E *< C I» C I)
530 POKE 5 0 ,6 3 : VTAB 2 t TAB C I+

6 ! PRINT CH$J! POKE 5 0 .2 5 5
5 35 IF C H ** " ” THEN GOSUB PARSE
540 IF T0KEN#255 THEN 550
5 42 REM BAD TOKEN FOUND - ABORT
543 REM » « = = = = === = ==== = ==== = = =
545 VTAB ER RLIN E: TAB 5 : PRINT

“ ILLEG AL INPUT"
546 GOSUB W A IT : GOTO 505
550 REM TOKEN HAS OK
555 REM CHECK NESTING OK
556 REM ================
560 IF NEST>=0 THEN 575
565 VTAB ERRLIN E: TAB i : PRINT

"TOO MANY RIGHT PARENTHESES"

5 66 GOSUB W AIT : GOTO 505
575 GOSUB WAIT
577 VTAB 2 : TAB C I+ 6 : PRINT CH*

580 NEXT C l
590 GOSUB POSTPROCESS
599 GOTO 505

1000 REM PREPROCESS THE INPUT
1001 REM
1002 REM INCLUDES IN IT IA L IZ A T IO N S
1003 REM REPEATED BEFORE EACH PARSE
1004 REM ==========================
1005 n o u p= - i : l a s t p = - i : n e s t =o
1006 T 0S =0 : REM STACK POINTER
1010 0 1 = 1 : REM OUTPUT INDEX
1015 VTAB O L IN E : TAB 5 : CALL CLREOL!

CALL CLREOL
1020 GOSUB SHOUNEST: GOSUB SHOWPREC
1099 RETURN
1100 REM POSTPROCESS THE INPUT
1101 REM =====================
1105 N O W P=-i: GOSUB SHOUPREC
1110 IF NEST=0 THEN 1120
1115 VTAB ERRLIN E: TAB 1*. PRINT

"NOT ENOUGH RIGHT PARENTHESES"

1120 IF T0S=0 THEN 1199
1125 GOSUB PULL
1190 GOSUB WAIT
1199 RETURN
1200 REM WAIT ROUTINE
1201 REM ============
1205 POKE CLRfO
1210 POKE 5 0 * 6 3 : VTAB 2 4 ! TAB 5
1212 PRINT "PRESS ANY KEY TO CONTINUE

" f
1213 POKE 5 0 t 255
1215 IF PEEK (K B D K 1 2 8 THEN 1215

1220 POKE CLRfO
1225 VTAB ER RLINEI TAB IS CALL CLREOL

1226 VTAB 2 4 ! CALL CLREOL
1249 RETURN
1300 REM DISPLAY OUTPUT TOKEN AT
1301 REM APPROPRIATE POSITION ON
1302 REM THE SCREEN.
1303 REM =======================
1305 VTAB OLINE.* TAB 0 1 + 6 ! PRINT

c h « ;
1 3 1 * 01=01+1
1349 RETURN
1400 REM PUSH OPERATOR TOKEN ON THE
1401 REM STACK. DISPLAY THIS ON
1402 REM THE SCREEN.
1403 REM ==========================
1405 T0S=T0S+1
1410 STACK(TOS)= ASC(CH*)
1415 VTAB STKLINEJ TAB TOS+4! PRINT

C H*r
1420 PRECEDENCE< TOS >=NOWP
1425 VTAB TO SLIN Et TAB 251 CALL

c l r e o l : p r in t t o s
1 4 4 9 RETURN
1450 REM POP OPERATOR TOKEN FROM THE
1451 REM STACK TO THE OUTPUT. THE
1452 REM SCREEN IS UPDATED TO SHOW
1453 REM TH IS TRANSFORMATION.
1454 REM ===========================
1455 IF NOUP>=PRECEDENCE(TOS) THEN

RETURN
1460 OPR=STACK< TOS)
1465 T 0 S = T 0 S -1 ! IF TOSCO THEN TOKEN=

255
1470 VTAB S TK LIN E : TAB TOS+5: PRINT

" " i
1475 GOSUB CONVERTJCHt=CHRi! GOSUB

OUTPUT
1477 VTAB TO SLIN E: TAB 2 5 ! CALL

CLREOL: PRINT TOS
1480 VTAB LA S TP LIN E : TAB 2 5 : CALL

c l r e o l : p r in t p r e c e » e n c e < t o s >

1485 GOTO 1455
1499 RETURN
1500 REM CONVERT NUM TO CHARACTER
1501 REM INTEGER BASIC CHR* FUNCTION
1502 REM IN USER CONTRIBUTED SOFT-
1503 REM UARE.
1504 REM ===========================
1505 CHR=OPR
1510 CHS=CHR+12S*<CHR<128 >
1515 LC1= PEEK (2 2 4) ' LC2= PEEK (

2 2 5) -< L C l> 2 4 3 > : POKE 79 +LC 1-
256*< LC 2>127)+(LC 2 -255 *< LC2>
1 2 7))*2 5 6 » C H S :C H R *= “ < “ : RETURN

1600 REM DISPLAY NESTING LEVEL
1601 REM =====================
1605 VTAB NESTLINE: TAB 2 5 ! CALL

c l r e o l : p r in t n e s t
1649 RETURN
1700 REM DISPLAY CURRENT PRECEDENCE
1701 REM AND TOP OF STACK PRECEDENCE

(Continued)

68 MICRO - The 6502/6809 Journal No. 39 - August 1981

1705 VTAB NOWPLINE! TAB 251 CALL
c l r e o l : p r in t nowp

1710 VTAB LA S TP LIN E I TAB 2 5 : CALL
CLREOL: PRINT PRECEDENCE(TOS)

174? RETURN
1900 REH ONE TIME IN IT IA L IZ A T IO N S
1901 REM TH IS INCLUDES PRINTING
1902 REM THE SCREEN LAYOUT.
1903 REM =
1910 PRECEDENCES > = -2 : REM NEEDED IN

ORDER TO STOP POSTPROCESSING
1950 VTAB 41 PRINT " * * * * * * * * * * * * * * * * *

* " ;
1952 POKE 5 0 ,6 3 : PRINT ‘'O UTPU T":

POKE 50»255
1954 PRINT "= = = > “
1956 VTAB 8 ! PRINT “ * * * * * * * * * * * * * * * * *

* “ ;
1958 POKE 5 0 * 6 3 : PRINT "S T A C K "! POKE

5 0 ,2 5 5
1960 PRINT “ == = > “
1962 VTAB 1 2 : POKE 5 0 ,6 3 ! PRINT

“ NESTING LE V E L = = == = = = = > ": CALL
CLREOL

1963 PRINT “ CURRENT PRECEDENCE===>"
: CALL CLREOL

1965 PRINT "LAST PRECEDENCE======>”
: CALL CLREOL

1966 PRINT ,‘ TOKEN================>"
: CALL CLREOL

1967 PRINT "STACK DEPTH==========>"
! CALL CLREOL

1969 POKE 5 0 ,2 5 5
1970 PRINT : PRINT : PRINT “ PRECEDE

NCE IS CALCULATED B Y."'
1972 PRINT : TAB 2'. PRINT “ PRECEDENCE

=(NESTING LEVEL*10)+TOKEN“
1999 RETURN
2000 REM EXECUTE PARSE MACHINE
2001 REM ACTIONS - CONVERT TO
2002 REM REVERSE POLISH NOTATION
2003 REM =======================
2005 GOSUB SCAN! REM CONVERT CHAR TO

TOKEN
2007 T *= C H *: REM SAVE IN CASE OF PUL

L
2008 VTAB TOKENLINE: TAB 2 5 : CALL

c l r e o l : p r in t t o k e n
2010 REH THE "PARSE MACHINE” TAKES
2011 REM ACTIONS BASED ON THE VALUE
2012 REM OF THE CURRENT TOKEN.

2020 IF T0K E N *-1 THEN 2030
2025 NEST=NEST+1! GOSUB SHOWNEST
2027 RETURN
2030 IF T 0K E N *-2 THEN 2040
2035 NEST=NEST-1! GOSUB SHOWNEST
2037 RETURN
2040 IF T0KEN*0 THEN 2050
2045 GOSUB OUTPUT! RETURN
2050 IF T0KEN=255 THEN RETURN
2055 NOWP=NEST#10+TOKEN: GOSUB SHOWPR

EC
2060 GOSUB PULL
2062 CH$=T»: REM RESTORE AFTER POSSI

BLE PULL
2065 GOSUB PUSH
2070 LASTP=NOWP
2099 RETURN
2500 REM DETERMINE NEXT TOKEN
2501 REM CONVERT CH* TO INTERNAL
2502 REM FORM. VALUES ARE!
2503 REM
2504 REM OPERAND- 0
2505 REM NOT - 1 (')
2506 REM AND/OR - 2 < « ,,!>
2507 REM RELOP - 3 * li A V

2 508 REM ADDOP - 4
2509 REM MULOP - 5 (* , / >

2510 REM EXPOP - 6 (t)
2511 REM LPAREN - -1 '< '
2512 REM RPAREN - - 2 ' >'
25 13 REM
2514 REM ========================
2520 IF (ASC< CH*)< A S C C A ”)) OR

(ASC< CH*)> A S C C Z ")) THEN
2525

2522 T0KEN=0: RETURN
2525 IF (ASC< CH*)< A S C <"0“ >) OR

< ASC< CH* » ASC<" 9 ")) THEN
2530

2527 T0KEN=0! RETURN
2530 IF C H * * "< “ THEN 2540
2535 T O K E N = -i: RETURN
2540 IF C H ** “)■ THEN 2550
2545 T 0 K E N = -2 : RETURN
2550 IF C H * * " ' ” THEN 2560
2555 T 0 K E N = i: RETURN
2560 IF < C H ** ” «.“ AND C H **y ! " > THEN

2570
2565 T0KEN=2S RETURN
2570 IF < C H *# "* " AND C H *# "= " AND

C H *#” < “ AND C H * * " > ") THEN 2580

2575 T0KEN=3: RETURN
2580 IF < C H ** "+ " AND C H * * " - ") THEN

2590
2585 T0KEN=4: RETURN
2590 IF (C H * * " * “ AND C H * * " / ") THEN

2600
2595 T0KEN=5: RETURN
2600 IF C H ** “ t " THEN 2610
2605 T0KEN=6: RETURN
2610 T0KE N =255! RETURN .* REM ERROR T

OKEN
3000 REM INTRODUCTION TO PROGRAM
3001 REM =======================
30 05 VTAB 1 ! TAB 1
3009 POKE 5 0 ,6 3
3010 PRINT " DEMONSTRATION OF EXPRES

SION PARSIN G ."
3011 POKE 5 0 ,2 5 5 : PRINT
3012 PRINT "T H IS PROGRAM CONVERTS INF

IX NOTATION"
3014 PRINT ‘ EXPRESSIONS TO REVERSE PO

LIS H n o t a t io n : "
3015 PRINT "ALSO KNOWN AS 'P O S T F IX ' N

O T A T IO N .“
3018 PRINT
3020 PRINT * THE INPUT EXPRESSION IS

SCANNED FROM"
3022 PRINT “ LEFT TO R IG HT. OPERANDS,

IN TH IS DEMO”
3024 PRINT "REPRESENTED BY SINGLE LET

TERS OR D IG IT S ,"?
3026 PRINT "ARE OUTPUT WHEN ENCOUNTER

ED. OPERATORS"
3028 PRINT "ON THE OTHER HAND ARE STA

CKED WHEN F IR S T "!

3030 PRINT "SCANNED. THE TOP OF THE
STACK IS SENT"

3032 PRINT "TO THE OUTPUT WHENEVER TH
E PRECEDENCE"

3034 PRINT "OF THE INCOMING OPERATOR
IS LESS THAN"

3036 PRINT "THAT OF THE TOP OF THE ST
A C K ."

30 38 PRINT
3040 PRINT “ USE THE FOLLOWING SPECI

A! rHARAPTF&Q"

3042 PRINT " IN PLACE OF THE LOGICAL 0
PERATORS:"

3044 PRINT ! TAB 5 : PRINT “ 'A N D ' - S“

3046 TAB 5 ! PRINT “ 'O R ' - ! "
30 48 TAB 5 ! PRINT " 'N O T ' - ' "
3990 GOSUB WAIT
39 99 RETURN

No. 39 - August 1981 MICRO - The 6502/6809 Journal 69

Listing 2

PROGRAM P O L IS H ?

USES A P P LESTUFF?

CONST

O U T L IN E = 5?
HOME = 12$
CLREOL * 29?
S T A C K L IN E = 9?
N E S tL IH E = 12$
N O U P L IN E = 1 3 ;
L A S T P L IN E * 14?
TO K E N L IN E = 15?
T O S L IN E = 1 6 ?
D E B U G LIN E = 22?
E R R O R LIN E = 21?

TY PE

TOKENVALUE = < N O TO K E N»O PERANB rNO TO P*AND O PfO RO P,LSSO P>
G TR O P fE Q LO P fN E Q O P f P LU S O P »M IN U S O P ,H U LTO P »
D IV O P f E X P O P f LPAREN* R P A R E N)?

OPERATOR » N O TO P ..E X P O P ?
BYTE = 0 . . 2 5 5 ?

STACK = RECORD
T O S : INTEG ER?
O P S ! ARRAYC0 « • 4 0 3 OF RECORD

OPR! OPERATOR?
P R E C .IN T E G E R ?

END?
END?

VAR

t o k e n : t o k e n v a l u e ?
E X P R E S S IO N : S T R IN G C 4 03 ?
R P N : S T R IN G C 4 0 3?
S C A N P TR : INTEG ER?
n e x t c h a r : CHAR?
O P S TA C K : STACK?
P R E CEDEN CE: ARR AYC0PERAT0R3 o f i n t e g e r ?
OPRCHAR: ARRAYCOPERATOR3 OF CHAR?
n o u p : i n t e g e r ?
l a s t p : i n t e g e r ?
0 1 : INTEG ER?
N E S T : INTEG ER?
d o n e : b o o l e a n ?

PROCEDURE P O P S T A C K (P : IN T E G E R)? FORWARD?
PROCEDURE INVER SE? EXTERNAL?
PROCEDURE NORMAL? EXTERNAL?
PROCEDURE FLASH? EXTERNAL?

(*)
< * W A I T *)
(*)

PROCEDURE W AIT?
v a r c h : c h a r ?
B E G IN

I F KEYPRESS
THEN

READ< C H)?
< * E N D I F * >

REPEAT
U N T IL KEYPRESS?
READ(CH) i

END < * W A IT *) ?

(*)
(* S C R E E N *)
< *)

PROCEDURE SC R E E N tC O N TR O L: B Y T E)?
B E G IN

W R IT E (CHR(C O N T R O L))?
END?

(*)
(* E N T E R *)
(*)

♦
PROCEDURE ENTERC N .S T R IN G) r
B E G IN

G O T D X Y (0 rD E B U G L IN E >f
W R IT E C 'E N T E R IN G ' >;
U R I T E (N) I
W A IT !

e n d ;

(I *)
C * E X I T *)
(*)

PROCEDURE E X IT (N ! S T R IN G) i
B E G IN

GOTOXY< 0 . D EBUG LINE)>
W R IT E C 'L E A V IN G ') !
WRITEC N)>
w a i t ;

e n d ;
(*)
C * S T A R L I N E * >
(* >

PROCEDURE S T A R L IN E ;
v a r i : i n t e g e r ;

B E G IN
FOR I ! = l TO *0 DO W R IT E C ' * ' >;
w r i t e l n ;

e n d c * s t a r l i n e * > ;

< * * * * * : *)
(* S H O W N E S T
< * >

PROCEDURE SHOWNEST!
B E G IN

G O T O X Y C 2 5 .N E S T L IN E) i
SCREEN(C L R E O L)!
WRITEC N E S T);

ENDC *S H O W N E S T *)i

< * >
< * S H O W P R E C *)
< *)

PROCEDURE s h o w p r e c e d e n c e ;
B E G IN

G 0 T 0 X Y < 2 5 , N O W P L IN E) ;
SC R E E N C C LR E O L);
WRITEC N O W P);
GOTOXYC2 5 , L A S T P L IN E);
SCREENC CLREOL) !
WRITEC O P S TA C K .O P S C O P S TA C K ,T0S3.PREC >;

END C *S H O W P R E C E D EN C E *)»

C I* * * * * * * * * * * * * * * * * * * # # # * * # * # : * * * * * * * * i
C * P R E C V A L S *)
C *)

PROCEDURE PRECVALS;

C * I N I T I A L I Z E PRECEDENCE ARRAY *)

B E G IN

p r e c e d e n c e c n o t o p i := 1 ;
PRECEDENCEC ANDOP 3 '.= 2 i
P R E C E D EN C E :O R O P] s= 2 ;
p r e c e d e n c e c l s s o p : i = 3 ;
PRECEDENCECGTROP3 1= 3 ;
P R E C E D E N C E C e q lo p : := 3 ;
PRECEDENCECNEQOP3 != 3 ;
PRECEDENCECPLUSOP 3 := 4 ;
PRECEDENCEC ftIN U S O P 3 J= + i
p r e c e d e n c e c m u l t o p d := 5 ;
P R E C E D EN C E C D IVO P 3 : = 5 ;
PRECEDEN CECEXP0P3 != 61

END C *P R E C V A L S *) !

C *)
. < * 0 P R V A L S *)
C *)

PROCEDURE OPRVALS;

C * I N I T I A L I Z E S T R IN G S TO P R IN T *)
(* OPERATORS W IT H . *)

B E G IN

OPRCHARC NOTOP 3 !=
OPRCHARCANDOP3 != ' i ' ;
OPRCHARCOROP3 i=
OPRCHARCLSSOP3 := ' < ' ;
OPRCHARCGTROP3 !=
OPRCHARCEQLOP3 ! = ' = ' !
OPRCHARCNEQOP3 S =
OPRCHARCPLUSOP3 != ' + ' ;
OPRCHARCMINUSOP3 != ' - 'S

(Continued)

70 MICRO - The 6502/6809 Journal No. 39 - August 1981

OPRCHARCMULTOP3
O PR CHARCDIVO P3
OPRCHARCEXPOP 3

1= "* "»
1 = ' / ' ?
:= " t" ?

END < *O P R V A L S *)?

(*)
< * S H O W T O K E N *)
(*)

PROCEDURE SHOWTOKEN< TJ T O K E N V A L U E)!
B E G IN

G O T O X Y < 2 5 rT 0 K E N L IN E) i
SCREEN(CLREOL)?

CASE T OF

n o t o k e n :
o p e r a n d :
n o t o p :
ANDOP:
o r o p :
l s s o p :
g t r o p :
e q l o p :
n e g o p :
p l u s o p :
m i n u s o p :
m u l t o p :
d i v o p :
e x p o p :
r p a r e n :
l p a r e n :

b e g i n

w r it e c
W R ITE (
y R IT E (
W R ITE (
WRITE<
WRITEC
WRITEC
U R IT E (
WRITEC
W R ITE (
WRITEC
WRITEC
W R ITE (
WRITEC
W R ITE (

END r
" OPERAND')?
' NOTOP')?
' ANDOP")?
" OROP')?
" LSSOP") i
" GTROP")?
"EQLOP" >?
"NEQOP") i
"PLUSOP" >?
' M IN U S O P ')?
"MULTOP") !
' D IV O P ")?
"EXPOP")?
"RPAREN")?
' LPAREN") !

END*

END < *SHOUTOKEN*)!

(*)
< * R P N O U T *>
(*)

PROCEDURE RPNOUT(C: CHAR)?
BEGIN

C* ENTERC"RPNOUT" >? *)
GOTOXYC0 1 fOUTLINE)?
WRITEC C >?
o i := o i + 1 ?
< * EXIT<"RPNOUT')? * >

END C*RPNOUT*)?

(*)
< * I N T R O D U C T I Q N *)
< ************************************)

PROCEDURE INTRODUCTION*
B E G IN

DEMONSTRATION OF E X P R E S S IO N P A R S IN G .")»

" T H IS PROGRAM CONVERTS IN F I X NO TA TIO N ")?
'E X P R E S S IO N S TO REVERSE P O L IS H N O T A T IO N :
"ALSO KNOWN AS " " P O S T F IX " NO TA TIO N ")?

SCREEN(HOME)?
IN V E R S E ?
W R ITELN?
W RITELN<
NORMAL?
W R IT E L N f
WRITELN<
U R IT E L N (
W RITELN<
U R IT E L N ?
W R IT E L N < ' THE IN P U T E X P R E S S IO N IS SCANNED FROM"
W R IT E L N (" L E F T TO R IG H T . OPERANDS f IN T H IS DEMO")
W R ITE LN <"R E P R E S E N T E D BY S IN G L E LE TTE R S OR D IG IT S
W R IT E L N < "A R E OUTPUT WHEN ENCO UNTERED. OPERATORS"
W R IT E L N < " ON THE OTHER HAND ARE STACKED WHEN F IR S
W R IT E L N ("S C A N N E D . THE TOP OF THE STACK I S SENT"
W R IT E L N < " TO THE OUTPUT WHENEVER: THE PRECEDENCE")
W RITELN< ' OF THE IN C O M IN G OPERATOR I S LESS THAN")
W R ITE LN C "TH A T OF THE TOP OF THE S T A C K ." >?
W R IT E L N f
W RITELN<
W R IT E L W
W R IT E L N f
W R IT E L N ("
W R IT E L N ('
W R IT E L N ('
W A IT ;
SCREEN< HOME >?

USE THE FOLLOWING S P E C IA L CHARACTERS'
IN PLACE OF THE LO G IC A L O PERA TO R S:")?

')?

)?
?
')?
)?

T")?
)?

" A N D ' "
" O R " "
'" N O T '"

- &"
- j '

END < *PROCEDURE IN T R O D U C T IO N * >?

(*)
(* I N I T I A L I Z E *)
< *)

PROCEDURE I N I T IA L IZ E ?
B E G IN

G O T O X Y (0 » 4 >?
S T A R L IN E ?
IN V E R S E ?
W R IT E C ' OUTPUT")?
NORMAL?
W R IT E L N < ' * * * > ')?
G O T O X Y < 0 > 8 >?
S T A R L IN E ?
IN V E R S E ?
W R IT E < "S T A C K ")?
NORMAL?
W R IT E L N (' « = > ')?
GOTOXYC O fN E S T L IN E)?
IN V E R S E ?

W R IT E C 'N E S T IN G L E V E L = = = = = = = = > ')?
S C R E E N (C L R E O L)?
G O TOXYCO fNO W PLINE)?

! W RITEC "CURRENT P R E C E D E N C E « = > ')?
SCREENC CLREOL)?
C O T O X Y C 0 » L A S T P L IN E)?
W R IT E C 'L A S T P R E C E D E N C E « = = = = > ')?
SCR E E N C C LR E O L)?
GOTOXYC 0 » T O K E N LIN E >?
WRITEC ' T 0 K £ N ™ * * * * = ™ = = « « > ')?
SCREENC CLREOL >?
GOTOXYCO f T O S L IN E)?
W R IT E C ' STACK D E P T H = = * = * ™ = » > ')?
SCREENC CLREOL >?
NORMAL?

END C (PRO CEDURE I N I T I A L I Z E *) ?

C *)
(* P R E P R O C E S S * >
< *)

PROCEDURE PREPROCESS?
B E G IN

NOWP := -1 ?
L A S TP -1 ?
NEST : = 0?
O P S TA C K .TO S J= 0? (*T O P OF S T A C K *)
O P S T A C K .0 P S C 0 P S T A C K .T 0 S 3 .P R E C := -1 ?
0 1 U ? C *O U TP U T IN D E X *)
GOTOXYC 0 1 rO U T L IN E)?
SCREENC C L R E O L)?
W R ITE LN ?
SCREENC C L R E O L)?
SHOWNEST?
SHOWPRECEDENCE?

END C tP R E P R O C E S S #)?

C *)
C * P O S T P R O C E S S *)
(*)

PROCEDURE POSTPROCESS?
B E G IN

NOWP : * -1 ?
SHOWPRECEDENCE?
I F NEST > 0
THEN
B E G IN

G O T O X Y C IrE R R O R L IN E)?
SCREENCCLREO L)?
FLASH?
W R IT E C ' TOO FEW R IG H T PARENTHESES")?
NORMAL?

END?

I F O P S TA C K .TO S > 0
THEN

POPSTACKCNOWP)?
(* E N D I F *)

W AIT?

END C *P Q S TP R Q C E S S *) ?

(*)
C * S E T U P *)
< *)

PROCEDURE S E TU P !
B E G IN

PRECVALS?
OPRVALS?
IN TR O D U C TIO N ?

END C * S E T U P *)?

(Continued)

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 71

(*# **)lt#*###***#yyy*y*y#**#*y*yyy****y)

(« S C A N *)
< yy***yyy*yyyyyyyy*yyyyyyyyyyyyyyyy#y)

FUNCTION SCAN J TOKENVALUE?
VAR

RETTOK: TOKENVALUE?
BEGIN

RETTOK := n o t o k e n;
WHILE RETTOK » NOTOKEN DO
BEGIN
NEXTCHAR I- EXPRESSIONCSCANPTR3?
SCANPTR := SCANPTR + 1?

CASE NEXTCHAR OF
'A' r'B' f 'C ' t'D' f'E' »'F' f'G' r'H' »' I' *'J' r'K' r'L' r'M' r
'N'f'O'f'P'f'Q'f'R'.'S'r'T'.'U'f'V'F'W'f'X'f'y'.'ZS
' O' f ' 17 r' 2 ' f ' 37 f ' 4 ' t7 57f 7 6 7 » '7 ' »' S7 f ' 9 7 ♦

RETTOK := OPERAND!>

RETTOK !!= NOTOP*
: RETTOK ;; = ANDOP?

! 7 t RETTOK 5 = OROP?
<7 . RETTOK ; = LSSOP ?
> ' : RETTOK ; = GTROP?

. RETTOK 5 = EQLOP?
%• X RETTOK t = NEQOP?
+ ' : RETTOK ; = PLUSOP?

j RETTOK MINUSOP
y 7 : RETTOK Is MULTOP?
/ ' : RETTOK { = DIVOP?
t': RETTOK EXPOP?
<7: RETTOK • = LPAREN?
)# : RETTOK RPAREN?

END (*CASE$)?
IF RETTOK = NOTOKEN
THEN
BEGIN

GOTOXY(0 f23)?
WRITE<'ILLEGAL CHARACTER IN EXPRESSION' >?

END!

END <*UHILE RETTOK = NOTOKEN*)?
SCAN := RETTOK?
SHOWTOKEN<RETTOK)?

END <» FUNCTION SCAN «>?

(f t * >
< * P 0 P S T A C K *>
(»y*yyyyyyy««yyyyyyyyyyyyyyyyy*yyyyyy >
PROCEDURE POPSTACK?
VAR

PC? CHAR?
BEGIN

WHILE P < OPSTACK * OPSC OPSTACK»TOS3. PREC DO
BEGIN

PC t - OPRCHARCOPSTACK.OPSCOPSTACK. TOS3»OPR3?
RPNOUT< PC)?
GOTOXY<9+OPSTACK. TOS fSTACKLINE)?
URITE(7 ') i
OPSTACK.TOS := OPSTACK.TOS - 1?
GOTOXY<2 5 pTOSLINE)?
WRITE<OPSTACK.TOS)!

END?

END (* P O P S T A C K *)»

< *y«yyy**y«**yyy*yyyyyyyyy*yy*»yyyyyy)
(» P U S H S T A C K *)
< yyyyyyyyyyyyyyyyyy«y*»«**yyyyyyyyy*y)
PROCEDURE PUSHSTACK< O. OPERATOR? PI INTEGER)?
BEGIN

WITH OPSTACK DO
BEGIN

TOS :» TOS + 1?
0PSCT0S3.0PR :« 0?
OPSC TOS 3•PREC * * P?

end (yw iTH y)?
GOTOXYC9+OPSTACK.TOSfSTACKLINE)?
WRITER 0PRCHARC03 >?
GOTOXY(25fT0SLINE)?
WRITE<OPSTACK.TOS)?

END (*PUSHSTACK*)?

(*y»»yyyy*y****y****«****yy*«**»**«*y)

<* P A R S E y>
< *syyyyyyyyyy*yyyyyyyy«yy«yy*yyyy*yyy)

PROCEDURE PARSE?
BEGIN

SCANPTR J= 1?
WHILE SCANPTR <= LENGTH(EXPRESSION> DO
BEGIN
GOTOXYt 3+SCANPTR>2)?
INVERSE?
WRITE<EXPRESSIONCSCANPTR3)?
NORMAL?
TOKEN := SCAN?
IF TOKEN * OPERAND
THEN

RPNOUT(NEXTCHAR)
ELSE

IF TOKEN =* LPAREN
THEN
BEGIN

NEST :* NEST + 1?
GOTOXY(25fNESTLINE)?
SCREEN(CLREOL)?
WRITE(NEST)?

END
ELSE

IF TOKEN = RPAREN
THEN
BEGIN

NEST J- NEST - 1?
GOTOXY(25fNESTLINE)?
SCREEN<CLREOL)?
WRITE(NEST)?

END
ELSE
BEGIN

NOWP != NESTy10 + PRECEDENCECTOKEN3!
SHOWPRECEDENCE?
POPSTACKtNOWP)?
PUSHSTACK<TOKENrNOWP)?

END (*IFy)?
< yENDiFy)

< yENDiFy)
WAIT?
GOTOXY(2+SCANPTRf2)?
NORhAL?
URITE<EXPRESSIONCSCANPTR-13)?

END (yWHILEy)?

END (ypROCEDURE PARSE*)?

BEGIN
SETUP?
DONE t = FALSE?
REPEAT

INITIALIZE?
GOTOXY(011)?
INVERSE?
WRITELN<7 INPUT EXPRESSION TO BE PARSED7 >?
NORMAL?
SCREEN*CLREOL)?
WRITEC'===>')?
READLN<EXPRESSION)?
IF LENGTH<EXPRESSION) = 0
THEN

DONE J = TRUE?
(tENDIFy)
PREPROCESS?
PARSE?
POSTPROCESS?

UNTIL DONE?
SCREEN(HOME)?

END*

JMCftO

72 MICRO - The 6502/6809 Journal No. 39 - August 1981

A TEAM OF 6809 SUPERSTARS:
Sm oke S ignal’s Chieftain™ Com puter,
and Softw are by M icroware

HERE'S THE TOTAL 6809-BASED SYSTEM FOR THOSE WHO DEMAND
UNSURPASSED POWER. FLEXIBILITY AND RELIABILITY

After years of worldwide use in diverse and challenging appli­
cations, the outstanding performers in 6809 computer opera­
tions are SMOKE SIGNAL and MICROWARE. These leading
companies are recognized as the undisputed choices when
there is no room for compromises.

WHY SMOKE SIGNAL AMD MICROWARE LEAD
THE 6809 FIELD
Smoke Signal began pioneering research and development on
6800/6809-based computer systems back in 1977. Microware
worked three years to perfect OS-9 and BASIC09.

Both companies have evolved outstanding 6809-based
products from early engineering research, and botti pay
almost fanatical attention to detail. Tor example . ..

SMOKE SIGNAL'S 6809-based Chieftain™ computer series has
proven its superiority in hundreds of demanding tasks. From
gold-plated connectors to highest-quality materials throughout,
each Chieftain™ is built to deliver absolute dependability from
day one, and stay that way through years of service.

• ENDURANCE-CERTIFIED !
. . . an exclusive Smoke !
Slgnalquality-contro lm ea- <
sure lh a i positively verifies <
a component is free o f de- J
fects. and meets o r exceeds j
all specifications.

Every Chieftain™ is meticulously
ENDURANCE-CERTIFIED at 2.2 MHz.
That's SMOKE SIGNAL'S endorse­
ment of product perfection.

MiCROWARE's state-of-the-art OS-9 UNIX’-like operating system
and the BAS1C09 language have been developed in close
coordination with computer manufacturers to maximize
optimum system performance. The finest possible support and

‘UNIX is a trademark of Bell Telephone Laboratories.

SMOKE SUM
BBOIDCISTING MICROWARE

31336 VIA COLIN AS
W ESTLAKE VILLAGE, CA 91362
TEL (213) 889-9340

documentation further ensure satisfaction. Microware software
performance is best summed up in this remark by a 25-year
computer veteran:

"BASIC09 IS THE FINEST HIGH-LEVEL LANGUAGE I'VE EVER
SEEN IN THE INDUSTRY!"

Thousands of engineers and programmers use MICROWARE
software products as their standard time-saving tool. . . to
execute process-control applications . . . and for other vital
functions. COBOL and PASCAL are also available under the
OS-9 operating system.

HOW THIS REMARKABLE TEAM OF COMPUTER
SUPERSTARS CAN SERVE YOU
SMOKE SIGNAL'S Chieftain™ computer provides an array of
configurations ranging from 5'A-inch drives for single-user
applications to multi-user, multi-tasking capabilities. Winchester
hard-disk drive systems are also available.

In other words, breathtaking power with as little as 48k
memoiy; Microware's OS-9 Level Two can access up to one full
megabyte that your Chieftain™ can address!

One more sampling of the awesome processing potential
at your fingertips with the Smoke Signal Chieftain™ computer:

MICROWARE'S Stylograph screen-oriented word processing
package instantly makes Chieftain™ an easy-to-use document
preparation system with comprehensive editing commands.

THERE'S MUCH, MUCH MORE! Call or write SMOKE SIGNAL
for details on Chieftain™ computers and MICROWARE software.

SMOKE SIGNAL Dealer opportunities are still available . . .
please request information.

□ Send information about Chieftain™ computers
and Microware software.

□ Provide information about Smoke Signal’s Dealer program.

Name _

A ddress.

City_____ . State- . Z i p .

Telephone (

/AlCftO
New Publications

Mike Rowe
New Publications
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA 01824

General 6809

6809 Assembly Language Programming
by Lance A. Leventhal. OSBORNE/
McGraw-Hill f 630 Bancroft Way,
Berkeley, California 94710), 1981, 568
pages, diagrams, charts, listings, 6Vi x
9V4 inches, paperbound.
ISBN: 0-931988-35-7 $16.99

This is a comprehensive book on 6809
assembly language programming. It is a
text both for those who have never
before programmed in assembly lan­
guage and also for experienced pro­
grammers, as well as a valuable
reference to the 6809 instruction set
and programming techniques.

CON TEN TS: Section I—Fundamental Con­
cepts: Introduction Assembly Language Pro­
gramming—A Computer Program; High-
Level Languages. Assemblers—Features of
Assemblers; Types of Assemblers; Errors;
Loaders. 6809 Machine Structure and
Assembly Language—6809 Registers and
Flags; 6809 Addressing Modes; Modes
W hich Do Not Specify Memory Locations,-
M em ory Addressing M odes; Indexed
M em ory Addressing M odes; Program
Relative Addressing for Branches; 6809
Instruction Set; 6800/6809 Compatibility;
6801/6809 Compatibility; 6502/6809 Com­
patibility; Motorola 6809 Assembler Con­
ventions. Section II—Introductory Prob­
lems: Beginning Programs—Program Ex­
amples; Problems. Simple Program Loops—
Program Examples; Problems. Character-
Coded Data—Handling Data in ASCII; Pro­
gram Examples; Problems. Code Conver­
s ion—Program E xam p les; P roblem s.
Arithmetic Problems—Program Examples;
Problems. Tables and Lists—Program Ex­
amples; Problems. Section in —Advanced
Topics: Subroutines—Program Examples;
P o s itio n -In d e p e n d e n t C ode; N ested
Subroutines; Problems. Parameter Passing
Techniques—The PSH and PUL Instruc­
tions; General Parameter Passing Tech­
niques; Types of Parameters. Input/O utput
Considerations—I/O Device Categories;
T im e Intervals; Logical and Physical
Devices; Standard Interfaces; 6809 In­
put/O utput Chips. Using the 6820
Peripheral Interface Adapter (PIA)—In­
itializing a PIA; Using the PIA to Transfer

Data; Program Examples; More Complex
I/O Devices; Problems. Using the 6850
Asynchronous Communications Interface
Adapter (ACIA)—Program Examples. Inter­
ru p ts — C h a r a c te r is t ic s of In te rru p t
Systems; 6809 Interrupt System; 6820 PIA
Interrupts; 6850 ACIA Interrupts,- 6809 Poll­
ing Interrupt Systems; 6809 Vectored Inter­
rupt Systems; Communications Between
Main Program and Service Routines; En­
abling and Disabling Interrupts; Changing
Values in the Stack; Interrupt Overhead;
Program Examples; More General Service
Routines; Problems. Section IV—Software
Development: Problem Definition—Inputs;
Outputs; Processing Section; Error Han­
dling; Human Factors/Operator Interac­
t io n ; E x a m p le s ; R e v ie w . Program
Design—Basic Principles; Flowcharting;
Modular Programming; Structured Pro­
gramming; Top-Down Design; Designing
Data Structures; Review of Problem Defini­
tion and Program Design. Documenta­
tion— Self-Documenting Programs; Com­
m ents; Flowcharts as Documentation;
Structured Programs as Documentation;
Memory Maps; Parameter and Definition
Lists; Library Routines,- Total Documenta­
tion. Debugging—Simple Debugging Tools;
Advanced Debugging Tools; Debugging
W ith C hecklists; Looking for Errors;
Examples. Testing—Selecting Test Data;
Examples; Rules for Testing; Conclusions.
Maintenance and Redesign— Saving
Memory; Saving Execution Tim e; Major
Reorganization. Section V—6809 Instruc­
tion Set: The Instruction Set. Appen­
dices—A. Summary of the 6809 Instruction
Set; B. Summary of 6&09 Indexed and In­
direct Addressing Modes; C. 6809 Instruc­
tion Codes, Memory Requirements, and
Execution Times; D. 6809 Instruction Ob­
ject Codes in Numerical Order; E. 6809 Post
Bytes in Numerical Order. Index.

Apple

Beneath Apple DOS by Don Worth and
Pieter Lechner. Quality Software (6660
Reseda Blvd., Suite 105, Reseda,
California 91335), 1981, 174 pages,
diagrams, charts, drawings, 5 3/8 x 8
3/8 inches, plastic comb binding with
cardstock cover. $19.95

This book is intended to serve as a
companion to Apple's DOS Manual,
providing additional information for
the advanced programmer or the novice
Apple user who wants to know more
about the structure of diskettes.

CON TEN TS: Introduction; The Evolution
of DOS—DOS 3; DOS 3.1; DOS 3.2 ; DOS
3.2.1; DOS 3.3. Diskette Formatting—
Tracks and Sectors; Track Formatting; Data
Field Encoding; Secto r In terleav ing .
Diskette Organization—D iskette Space
Allocation; The VTOC; The Catalog; The
Track/Sector List; T ext Files,- Binary Files;
Applesoft and Integer Files; Other File

Types; Emergency Repairs. The Structure of
DOS—Dos Memory Use; The DOS Vectors
in Page 3; What Happens During Booting.
Using DOS from Assembly Language-
Direct Use of the Disk Drive,- Calling
READ/W RITE T rack/ Secto r (RW TSJ;
RWTS IOB by Call Type; Calling the DOS
File Manager; File Manager Parameter List
by Call Type; The File Manager Work Area;
Common Algorithms. Customizing DOS—
Slave vs. M aster Patching; Avoiding Reload
of Language Card; Inserting a Program Be­
tween DOS and Its Buffers; BRUN or EXEC
a HELLO File; Removing the Pause During a
Long Catalog. DOS Program Logic—Con­
troller Card ROM — Boot 0; First RAM
Bootstrap Loader — Boot 1; DOS 3.3 Main
Routines; DOS File Manager; READ/
WRITE Track/Sector; DOS Zero Page Use.
Appendix A. Example Programs—Track
Dump Program; Disk Update Program;
Reformat a Single Track Program,- Find
Track/Sector Lists Program; Binary to Text
File Convert Program. Appendix B. Disk
Protection Schemes. Appendix C. Glossary.
Index.

Apple D User's Guide by Lon Poole,
with Martin McNiff and Steven Cook.
O SBO R N E/M cG raw -H ill (630
Bancroft Way, Berkeley, California
94710), 1981, xii, 386 pages, photos,
diagrams, tables, listings, 6 x 9K
inches, paperbound.
ISBN: 0-931988-46-2 $15.00

This guide to the Apple n computer
describes both the Apple n and the
common peripheral devices including
disk drives and printers. It assumes
access to an Apple n system already
hooked up.

CON TEN TS: Introduction. Presenting the
Apple //—(Keyboard and TV, Inside the
Apple n , Memory, Cassette Recorder, Disk
Drive, Programs, External Device Con­
trollers, Game Controls, Printer, Graphics
Tablet). How to Operate the Apple H—
Turning the Power On (What You See on
the TV, The Prompt Character); The
Keyboard; The Cassette Recorder; Using the
D isk n (The D isk Operating System, Prepar­
ing Blank Diskettes); Loading and Running
a Program (Use the Right Version of BASIC,
Loading a Program from Cassette, Loading a
Program from Disk, Starting a Program
Running, Setting TV Color); Miscellaneous
Components; Coping with Errors (Error
Messages, Correcting Typing Mistakes,
A cc id en ta l R e se t). Programming in
BASIC—(Starting Up BASIC); Immediate
and P rogram m ed M odes (P r in tin g
Characters, Printing Calculations, Error
M essages, E xtra B lan k S ta tem e n ts ,
Statements, Lines and Programs, Program­
med Mode, Saving Programs on Cassette);
Sw itching BASICS; Advanced Editing
Techniques (D eleting Program Lines,
Adding Program Lines, Changing Program
Lines, Reexecuting in Immediate Mode);

(Continued on page 91)

74 MICRO - The 6502/6809 Journal No. 39 - August 1981

MICRO
Classified
SYM-1 Expansions
Bare W7AAY 4K RAM board - $8.00 plus
SASE. Assembled W7AAY ROM board -
$16.00. RAE symbolic disassembler source
on cassette - $15.00. Instruction packet to
add floppy disks to SYM -$15.00. RAE/
KMMM software interface on 5 W disk­
ette - $15.00. SASE for more information.

John M. Blalock
Blalock & Associates
P.O. Box 39356
Phoenix, AZ 85069

OSI Superboard —
Cabinet and Accessories
Pre-cut kit with hardware to build a hand­
some pine cabinet to house your super­
board. Room inside for the power supply
and all your extras, $20. RS-232 interface
kit, $10. Send for our catalog of software,
hardware, kits and accessories.

Dee’Products
150 Birchwood Road
Carpentersville, IL 60110

Space Invaders for OSI
Bug free, smooth action, addictive, entire­
ly in machine language. Requires only 2K
and loads in 1 minutes. Includes color,
sound, 10 skill levels, and optional
joystick control. Difficulty increases as
game progresses. For C2-4P, C4P tape
systems. $12.00.

M ike Kincaid
6653 Lunde Rd.
Everson, WA 98247

Used Micro Listing Service
Save time, money, mistakes, frustration.
List as Buyer/Seller — Apple, PET, OSI,
CP/M systems, floppies, printers — all
equipment $300 and up. Pay only for
results. Get thorough advice and listings
over the phone. Call now: 800-327-9191 x
61 or 703-471-0044.

Used Computer Exchange
2329 Hunters Woods Plaza
Reston, VA 22091

New General Ledger by SBCS
This system for the Apple n is based on
our standard G/L and is even more flexible
and efficient. It includes increased error
checking and user prompting. Reports are
more detailed and include budgeting.
Documentation is rewritten to provide
more detail and clarity,

s Small Business Computer Systems
V 4140 Greenwood

Lincoln, NE 68504
402/467-1878

Apple Undeleter
Apple U n d eleter re s to re s d eleted ,
unrewritten files of all types. W ritten in
heavily commented Applesoft for easy
understanding, copying and modification,
Undeleter works with any memory size
Apple and is available for DOS 3.2 and 3.3.
Price is $12.00 ppd.

D. Cox
787 Gantry Way
Mountain View, CA 94040

Tlmestack — A Programmable
Controller
Expand your KIM-1 into a general-purpose
m achine. 80-page manual documents
C lock/Port/R A M /PR O M E xp an sion
Board and controller software. Subroutine
library includes user interaction routines,
I/O, and clock controls. Complete manual
— $15.00. SASE for more information and
newsletter.

Hunter Services
P.O. Box 359
Elm Grove, WI 53122

Accounts Receivable by SBCS
This conversion of Osborne's Accounts
Receivable software for the Apple II con­
tains the same capabilities, plus many
enhancements that increase your Apple's
flexibility, speed, and performance. Use
alone or integrate with General Ledger.
Retail price $249.

Small Business Computer Systems
4140 Greenwood
Lincoln, NE 68504
402/467-1878

AIM 65 Utilities
Improve productivity with quality AIM
software. U TILl package adds 18 com­
mands to the AIM monitor. Copy and
move capability for the editor, memory
search and move, virtual I/O and much
more. Manual $5 or send SASE for infor­
mation on this and other software.

Nehalem Bay Software
25730 Beach Dr.
Rockaway, OR 97136

AIM-65 Newsletter * * Target
Target provides hardware and software
information useful for AIM-65 and 6502
users. The 1979 and 1980 back issues are
available for $12.00 while a continuing
subscription costs $6.00. Just write to:

Target
Donald Clem
Route 2
Spenserville, OH 45887

PET/CBM Owners
Real world software at low cost. 2114
RAM adapter and 4K Memory Expansion
for "o ld '' 8K PETs. Write for free catalog!

Optimized Data Systems
Dept. M, Box 595
Placentia, CA 92670

C1P Extended Monitor
2K EPROM has 14 cursor control/editing
functions, improved keyboard decoding.
Machine language save, load, display,
modify, move, breakpoint processing and
much more. For 24, 32, 64 char/line.
$39.95 plus $1.00 shipping. $1.00 for
complete information.

Bustek
P.O. Box A
St. Charles, MO 63301

Spanish Hangman
2,000 SPANISH words and sentences
taught in a fun way on the Apple. Send for
your school's free 30-day evaluation
diskette, from:

George Earl
1302 South General McMullen
San Antonio, TX 78237

Business Software by ADS
For the Apple II and Atari/800. Why pay
more for a bunch of unrelated programs?
Business Plus w ill handle invoices,
statements, credit memos and more,
much more! Just $299 complete or $25 for
demo disk (credited towards purchase).
VISA, Mastercharge accepted.

Advanced Data Systems
7468 Maple Avenue
St. Louis, MO 63143
314/781-9388

Each classified ad costs only $10.00 per
insertion, pie-paid with typewritten
copy. Please limit these entries to less
than 40 words. (Oversized ads will be
rejected and returned.) Title line, name
and address are not considered in
count. Ads received before the 20th of
the second month preceding the month
o f publication will be published in next
issue, i.e. May 20th for the July issue.
For further information, call (617)
256-5515.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 75

WHAT'S MEW?
Consumer Computers announces it's lowest prices ever.

Apple Add-Ons
Language System w/Pascal...3 79
Mayes Micromodem II ..2 99
novation Apple-Cat I I ... 3 39
Vide* Videoterm 8 0 w/graphics...269
2-80 Microsoft C a r d ... 269
16K Ram Card Microsoft ...159
ABT Numeric Keypad (old or new hybrd) 110
ALF 3 Voice M ust Card...2 39
Heuristics Speechlink 2 0 0 0 ...2 49
Alpha Syntaurl Keyboard System 1399
Corvus 10 MB hard Dish ...CALL
Lazer Lower Case Plus 50
Micro-5cl DlsK Drives (A40 & A 7 0).......................................CALL
SSM AlO Serial/Parallel Card A & T ...189
ThunderClock Plus ... CALL
Integer or Applesoft II Firmware Card..................
Graphics Tablet..
Parallel Printer Interface Card..................................
hi-Speed Serial Interface C a r d
Smarterm 80 Column Video Card..........................
MusicSystem (16 vo ices).......................................
A/D + D/A In te r fa c e ...
Clock/Calendar Card
Supertalker 5D-200
Rompius + Card...
Clock/Calendar Module (CCS)..................................
Asynchronous Serial Interface Card (CC5)
We carry all CCS hardware Please CaH

. 145

.61 9

.1 3 5
135

.2 9 9

.4 7 9
289
225

.2 3 9
135

. .9 9

.1 2 9

FREE CATALOG!
Please mail us your name and address.

Solution Software for the Apple II.
Visicalc 3 . 3 ...
CCA Data Management..........................
DB Master. .
WordStar (Apple 8 0 col. ver.)
Desktop Plan II
Applewriter ..
Easywriter
Appleplot..
Peachtree Business
ViSiTerm
VlsiTrend/VlsiPlot
DOS Toolkit...
Dow Jones Portfolio Evaluator.............
Dow Jones hews & Quotes Reporter
Apple Fortran.

. .1 6 9

. . .8 5

. 169

. .29 9
169

. 65
225
.6 0

. 1200
129
219

. . .65
45

. .85
. .16 5

Atari Personal Computer

ATARI 800 16K $749
Atari Accessories

4 1 0 Program R e c o rd e r ...59
8 1 0 Disk D r iv e449
8 5 0 Interface M odule... 159
16K Ram Memory Module.. 89

Please call us for an Atari Software List.

5 -100 Cards
55n *

Z-00 CPU 05-2.................. 219
104 2 P ♦ 251/0............. .. .109
VO-3 80 x 24 VADCO.............. 329
VB-3 80 x 48 VIDEO...............369
BV-2 VIDEO.................... 159
PB1 PROMPRGMMR&CPROMBOARD. . .139

CCS
Z80 CPU 2810..................n/a
64K Dynamic RAM card............ n/a
16K Stadc RAM 2 MHz............. n/a
16K 5tatic RAM 4 hhz f t *
061. Dtnafty floppy Doc Controtar..... rvt
12 Skit 3-100nfc

ASSfr) &
Tested

2 79
2 49
379
4 29
219
199

229
4 99
249
2 69
2 99
9 49

16K 48K

$1025 $1129
Disk II Drive . _ - ^
w/controller

Disk drive w/out controller.........................439
Ufe carry the Apple HI

CALL FREE!
8 0 0 - 8 5 4 - 6 6 5 4

In California and outside continental U.S.

(7 1 4) 6 9 8 - 8 0 8 8
Warehouse (714) 698-0260

Service (714) 460-6502
TELEX 6 9 5 0 0 0 BETA CCMO

AVAILABLE NOW . . .

The MEC Microcomputer
Please call for more details.

Exidy Sorcerer II

Please call
for

our price.
5 -1 00 Unit.. 4 49
Word Processing P a c179
Development P ac .. 8 9

PMC-80 Micro Computer

$ 5 9 9

Ohio Scientific
Challenger
Computer.

4P $549
1P MOD I I

3 99

Printers, Etc.
/■ * '

Epson MX-80

$499
Silentype w/Apple Interface............. 349
Epson MX-80 F/T 649
Epson MX-1 0 0 829
Epson MX-7 0 .. 339
Paper Tiger IDS-445.. 729
Paper Tiger IDS-460....................................... 1099
Paper Tiger IDS-560..................... 1450
Qume Sprint 5 /4 5 .. 2495
Anadex DP-9500/ w/2K Buffer... 1349
C. Itoh Starwriter 25 CPS 1649
C. Itoh Starwrlter 45 CPS . 2249
Centronics 737 699
Watahabe D ig lP fo t........................ 1149

Save on Video displays.

Amdek/Leedex Video 100 12" B&W
Am dek(hitachi) 13" Color
MEC 1 2 " K31 Green phospher
MEC 12" ROB Ht-Res Cokx
Panasonic 1 3 " Color
Sanyo 9 " B&W
5 a n y o l2 " B & W
Sanyo 12 " P 31 Green Phospher
5anyo 13" Color

139
359

CALL
CALL
449
159
239
279
4 19

We carry much m ore than listed. Flease call our to ll fre t
order line to re q u e st our complete price lis t

How to Order
Ordering information: Phone orders using VISA, MASTER­
CARD, AMERICAN EXPRESS, DlhER'S CLUB, CARTE
BLAMCME, bank wire transfer, cashiers or certified check,
money order, or personal check (allow ten days to clear.)
Unless prepaid with cash, piease add 5% for shipping, handl­
ing and insurance, (minimum $5.00). California residents add
6% sates tax. We accept CODs, OEM's, Institutions and cor­
porations please send for a written quotation. All equipment
te subject to price change and availability without notice. All
equipment is new and complete with manufacturer's warran­
ty (usually 9 0 days). Showroom prices may differ from mall
order prices.

Send orders to:

Mail Order
8 3 1 4 Parkway Drive

La Mesa, California 92041

Common Array Names
in Applesoft II

Here Is a new command for
Applesoft II. Its function Is to
change the names of floating
point and integer arrays during
program execution.

Steve Cochard
P.O. Box 236
Boyertown, Pennsylvania 19512

One aspect of the BASIC language

0which differs from other high-level
languages, such as FORTRAN, is its lack
of ability to handl e subroutine calls with
parameter lists. This feature of FOR­
TRAN allows the programmer to specify
what variables are to be passed to a
subroutine. The FORTRAN subroutine
name and subroutine call contain lists of
the variable names to be used in the
subroutine. What this does is to allow
the programmer to call standard or
''canned'' subroutines from the main
program without rewriting the sub­
routine to incorporate the variable names
used in the main or calling program.

Any Apple disk user who keeps a
subroutine library on disk must have
come across this problem with Apple­
soft. The current solution is to either
rewrite the subroutine to incorporate
the variable names as used in the main
program, or tailor the main program to
conform with the standards established
by the subroutines in use.

Another, somewhat smaller problem,
is interchanging the elements of one
array with those of another. This is
found in ■ game-type applications fre­
quently. The current solution is to write

FOR-NEXT loop of sufficient depth, to
Mwvap each element. Needless to say, as

^ h e size or number of dimensions in­
creases, so too does the execution time.

Listing 2: Another trivial program to show the use of the name change feature in use
with subroutines.

1 POKE 1 0 1 3 , 7 6 :POKE 1 0 1 4 ,0 :P O K E 1 0 1 5 , 3
10 DIM A (1 5) , B (1 5 , 1 5) ,C (1 0) , D (2 5)
15 PRIN T "THE ARRAY ' C "
20 FOR 1= 1 TO 10
30 C (I) = IN T (R N D (1)* 1 0 0)
4 0 PRINT C (I) ,
5 0 NEXT
60 &(C , J)
70 GOSUB 2 0 0
8 0 & (J ,C)
90 PRINT "THE ARRAY ' C' I S RESTORED"

1 0 0 FOR 1= 1 TO 1 0 : PRIN T C (I) , : NEXT: END
2 0 0 PRIN T "THE ARRAY ’ J ' "
2 1 0 FOR 1= 1 TO 10
2 2 0 PRINT J (I) , : NEXT: RETURN

Listing 1: Trivial program to show name changing and speed of an & command
relative to BASIC. Note that the machine language program must be loaded at $300
for proper operation of program listings 1 and 2.

1 POKE 1 0 1 3 , 7 6 :POKE 1 0 1 4 , 0 : POKE 1 0 1 5 , 3
10 DIM A (1 5) , B (1 5) ,C (1 0 0 0) , 6 (1 5) ,E (1 0 0 0)
2 0 FOR 1= 1 TO 1 0 0 0
3 0 C (I)= IN T (R N D (1) * 5 0 0)
4 0 NEXT
50 HOME: PRIN T "IN IT IA L IZ E D , H IT ANY KEY TO TRANSFER

ELEMENTS OF ARRAY C TO ARRAY Ê " ; : GET A$
1 0 0 FOR 1= 1 TO 1 0 0 0
1 1 0 TEMP= C (I)
1 2 0 C (I) = E (I)
1 3 0 E .(I) = TEMP
1 4 0 NEXT
1 5 0 PRINT "ELEMENTS 5 0 0 TO 5 1 0 OF ARRAY ' E ' "
1 6 0 FOR 1= 5 0 0 TO 5 1 0
1 7 0 PRIN T E (I) , : NEXT
1 8 0 PRINT "TRANSFER COMPLETE. H IT ANY KEY TO TRANSFER

BACK USING COMMON ARRAY NAME C O M M A N D G E T AS
2 0 0 &(C ,T) : REM CHANGE 'C ' TO 'T *
2 1 0 S (E ,C) : REM ARRAY ’ E ' NOW HAS THE NAME 'C '
2 2 0 &(T ,E) : REM ARRAY ' C' HAS THE NAME OF 'E '
2 3 0 PRIN T "TRANSFER COMPLETE. ELEMENTS RESTORED IN ARRAY

• C * "
2 4 0 FOR 1= 5 0 0 TO 5 1 0
2 5 0 PRINT C (I) , :NEXT
2 6 0 PRIN T "DONE"

No. 39 - August 1981 MICRO - The 6502/6809 Journal 77

What do these two, seemingly
unrelated, problems have in common?
Each has the identical, simple solution:
change the names of the arrays during
program execution.

With the first problem, the solution
is to simply change the names of the
arrays stored in memory to those used in
the subroutine before calling the
subroutine. After subroutine execution,
the names are changed again to the
original. The second problem is solved
not by interchanging array elements, but
simply by interchanging array names.

The assembly language program
presented here solves these problems by
changing the names of integer or
floating point arrays as stored in the
Apple during program execution. The
program uses the ampersand (&) as the
interface between BASIC and itself. This
feature of Applesoft greatly simplifies
using utilities such as this. A very brief
explanation of the & command may be
found in the Applesoft II manual, and is
included here for the sake of continuity.

This symbol, when executed as
an instruction, causes an uncon
ditional jump to location $3F5.

Since this is the case, all that needs
to be done is to place a JMP instruction
in this location to the start of the
machine language routine to be used.
For this utility, which is assembled at
location $300, the user would, from the
monitor, enter the following to set the
& "hook":

*3F5:4C 00 03

This, of course, may also be done
from the BASIC program by the appro­
priate use of POKEs. In this example the
following program line would need to be
executed prior to utilizing the &.
command:

100 POKE 1013,76: POKE 1014,0
: POKE 1015,3

Or in general form:

LINE# POKE 1013,76;POKE 1014,
(ADDRESS MOD 256): POKE
1015, (ADDRESS/256): REM
ALL NUMBERS = INTEGERS

Once this is done the hook remains set
until changed by either the program or
user, or the computer is powered down.

Listing 3

1000

1010 * *

1020 * COMMON ARRAY *

1030 * NAMES IN +
1040 * APPLESOFT II *

1050 * BY *
1060 * S. C0CHARB *
1070 * (C) 1980 *
1080 * *
1090 » <S- C ASSMB II <4. 0> FORMAT) *

1100 * *
1110

1120 *

1130 * NOTE: ONLY GLOBAL LABELS HAVE BEEN USES

1140 * FOR COMPATABILITY UITH OTHER ASSEMBLERS

1150 *
1160 *

1170 .OR *300

004B- 1180 PTRI .EQ <6B START OF ARRAY SPACE

004B- 1190 PTR2 .E0 *6B END OF ARRAY STORAGE

0071- 1200 TEMP .EQ *71 TEMP STORAGE

0073- 1210 MASK .EQ *73

OOB1- 1220 CHRGT .EQ *B1 APPLESOFT CHRGET ROUTINE

0210- 1230 NAME .EQ *210 TEMP STORAGE

0216- 1240 NAM2 .EQ (216 TEMP STORAGE

0220- 1250 ZPSV .EQ *220 TEMP STORAGE

DEC9- 1260 SNTX .EQ *BEC9 SYNTAX ERROR

1270 *
1280 * START OF PROGRAM

0300- 48 1290 START PHA SAVE FIRST CHARACTER

0301- A2 0A 1300 LBX #10 SAVE SOME ZERO PAGE

0303- BS 6B 1310 STA1 LBA P T R I ,X

0305- 9D 20 02 1320 STA ZPSV,X

0308- CA 1330 BEX

0309- 10 F8 1340 BPL STA1

030B- A9 00 1350 LBA #00 CLEAR MASK

om- 85 73 1360 STA MASK

030F- A2 OC 1370 LBX «*0C

0311- 9» 10 02 1380 LOOP STA NAME,X CLEAR NAME

0314- CA 1390 BEX

0315- 10 FA 1400 BPL LOOP

0317- 48 1410 PLA GET FIRST CHAR BACK

0318- C9 28 1420 CMP H'i SEE IF IT'S A '<

031 A- F0 02 1430 BEQ C0N7 YES! CONTINUE

031C- B0 1 A 1440 BNE SYER NO! SfNIAX ERROR

0 3 1 E- 20 B1 00 1450 CON? JSR CHRGT CONTINUE UITH CHAR'S

0321- 8B 10 02 1460 STA NAME AND SAVE IT.

0324- E8 1470 INX

0325- E8 1480 LOOt INX GET SOME MORE TEXT

0326- E0 06 1490 CPX 006 LEN OF NAME GREATER

0328- B0 02 1500 BNE C0N3 THAN 6 CHARACTERS?

032A- F0 OC 1510 BEQ SYER YES! THEN ERROR!

032C- 20 81 00 1520 com JSR CHRGT C0NTUNUE UITH CHAR'S

032F- C9 2C 1530 CMP END OF ARRAY NAME?

0331- FO 08 1540 BEQ C0H r YES! NEXT NAME

0333- 9B 10 02 1550 STA NAHE,X NO! STORE IT.

0334- B0 EB 1560 BNE L001 JUMP BACK FOR MORE.

0338- 4C C9 BE 1570 SYER JME SNTX JUMP TO APPLESOFT SYNTAX ERR

033B- CA 1580 C0NT BEX IS ARRAY AN INT ARRAY?

033C- BB 10 02 1590 LBA NAME.X

033F- C9 25 1600 c m p rj:

0341- BO 09 1610 BNE C0N1 NO, A FP ARRAY

0343- A9 80 1620 LBA 11*80 YES, SET MASK FOR NEG

0345- 85 73 1630 STA MASK ASCII.

0347- A9 00 1640 LBA *00 NEXT, CLEAR X CHAR IN NAME

0349- 9B 10 02 1650 STA NAME,X

034C- A2 00 1660 C0N1 LBX #00 GET SEC0NB NAME.

r

(

78 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

Listing 3 (Continued)

034E- 20 B! 00 1470 L002 JSR CHRGT

0351- C9 25 1480 CHR #'3! IS IT AN INT.ARRAY?

0353- BO 02 1490 BHE C0N8 NO, A FP ARRAY

0355- A? 00 1700 LBA ItOO YES, SET CHAR=0

0357- C9 29 1710 C0N8 CMP r > END OF NAME?

0359- FO 0A 1720 BED C0N2 YES! CONTINUE

035B- 9D 14 02 1730 STA NAM2,X NO! STORE NAME # 2

035E- E8 1740 INX

035F- EO 04 1750 CPX *06 LEN GREATER THAN 4?

0361- B0 EB 1740 BNE L002 NO, CONTINUE!

0343- FO D3 1770 BEQ SYER YES! ERROR!

0345- A2 OC 1780 COM2 LDX H O C MASK NAMES.

0347- A5 73 1790 C0N4 LBA MASK

0349- 5D 10 02 1800 E0R NAME,X

0 3 4 C- 9D 10 02 1810 STA NAME,X

034F- CA 1820 BEX

0370- 10 F5 1830 BPL COM4

1B40 *

1850 * LOCATE WHERE ARRAY IS STORED

1840 *

0372- AO 00 1870 L003 LBY #00 LOOK AT FIRST NAME IN -HEM

0374- Bt 4B t880 LBA (PTR1),Y

0374- CB 10 02 1890 CMP NAME IS IT - TO NAME

0379- DO OA 1900 BNE CDN5 NO, LOOK SOME MORE

037B- C8 1910 INY NEXT CHAR IN NAME.

037C- 81 4B 1920 LBA (PTRI),Y

037E- CB 11 02 1930 CMP NAME+1 IS IT = NAME*

1940

1950

0381- BO 02 1940 BNE C0N5 NO, LOOK SOME MORE.

0383- FO 2A 1970 BEQ FINB FOUND ARRAY! N0U CHANGE I

0385- AO 02 1980 C0N5 LBY *02 GET OFFSET TO NEXT ARRAY.

0387- 81 48 1990 LDA (PTRI ,Y

0389- 85 71 2000 STA TEMP SAVE HI BYTE.

038B- CB 2010 INY

038C- 81 48 2020 LDA (PTRI ,Y

038E- 85 72 2030 STA TEMP+1 SAVE LO BYTE

0390- 18 2040 CLC SET UP TO ADD

0391- A5 48 2050 LBA PTRI

0393- 45 71 2040 ADC TEMP

0395- 85 bt 2070 STA PTR1

0397- A5 4C 2080 LBA P T R I +1

0399- 45 72 2090 ADC TEMP+1

039B- 85 .6C 2100 STA PTR1+1

0390- A5 4E 2110 LBA PTR2+1 UAS THAT THE LAST ARRAY

039F- C5 6C 2120 CMP P T R I +1 IN MEMORY?

03A1- FO 04 2130 BEQ C0N4 MAYBE!

03A3- 10 CB 2140 BPL L003 NO! NOT THIS TIME!

03A5- 30 13 2150 BMI RTRN UAY PAST IT. TIME TO END!

03A7- A5 6D 2140 C0N6 LBA PTR2 H0U 'BOUT L0 BYTE

03A9- C5 4B 2170 CMP PTR1

03AB- FO OD 2180 BEQ RTRN YES, THIS IS THE END

03AD- B0 C3 2190 BNE LOOS NOPE, CONTINUE.

2200 * SUITCH NAMES IN hENORY

2210 *

03AF- AD 17 02 2220 FIND LDA NAM2+1 FOUND IT. NOW

03B2- 91 48 2230 STA (PTRI),Y SUITCH NAMES.

03B4- 88 2240 DEY

0385- AB 14 02 2250 LDA NAM2

03BB- 91 4B 2260 STA (PTR1> ,Y

03BA- A2 OA 2270 RTRN LDX m o RESTORE ZERO PAGE

03BC- BD 20 02 2280 RTR1 LDA ZPSV,X

03BF- 95 48 2290 STA PTR1 ,X

03€1- CA 2300 DEX

03C2- 10 F8 2310 BPL RTRI

03C4- 20 81 00 2320 JSR CHRGT GET LAST CHARACTER

03C7- 40 2330 RTS AND RETURN TO BASIC

To use the COMMON ARRAY
NAME program the program must first
be loaded into memory. Since the pro­
gram is relocatable, it will operate cor­
rectly without changes when residing
anywhere in memory. A convenient
place is starting at hex $300 (768
decimal). Next set the & hooks to the
starting address of the program and it is
ready to run.

The command to change an array
name is of the following form:

&(AA,BB)
&(CAT%,DOG%)

or in general form:

& (n a m e l (%) , n a m e 2 | %))

The % is optional and depends on the
array type (int/fp). The command may
be used in immediate execution mode or
deferred execution mode (within a pro­
gram). Program listing 1 and listing 2
show examples of the command in use.

Certain limitations are imposed
when using this program. Floating point
array names are restricted to a max­
imum of five characters, integer arrays
have a maximum of four. This does not
limit the versatility of the program,
however, since only the first two
characters of any variable name are
significant in Applesoft. If a longer array
name is in use, just shorten it to four or
five characters for use in the & com­
mand. Everything will work out OK.

Array types may not be intermixed.
That is, a floating point array will not be
changed to integer and vice-versa.

Two array names must be present in
the & command. If not, the program
will assume that the first character after
the comma is the second name. If used
in this way, it is possible to have an
array internally renamed to “)

If the first (old) array name in the
command does not exist in the variable
table, no changes will take place. This
condition is not signaled to the user.
Therefore, care should be taken to have
the array DIMensioned prior to using
the name change feature.

The Program

The program, quite simple in opera­
tion, consists of three parts. The first
section reads the old and new array
names from the Applesoft &. statement.
It then stores these names and checks
for the array type, either integer or FP.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 79

The two are differentiated, of course, by
the presence or absence of the % sign in
the array name. Applesoft, however,
knows nothing of % signs. It differen­
tiates t ie two by how the name is stored
in memory. Floating point array names
are stored as positive ASCII, integers as
negative ASCII. In other words, the high
order bit is clear or set, respectively.
This is dealt with in the program by ex­
amining the last character in the first ar­
ray's name. If it is a %, then a mask is
set equal to $80, which in binary is a one
followed by seven zeros. If the array is a
floating point, then the mask is set
equal to zero. With this done, all that is
necessary is to "exclusive or" the
names with the mask. This will set or
clear the high order bit as required.

The second section of the program
locates the array in memory. It first
picks up the pointer to the start of array
storage from locations $6B and $6C.
Then the locations pointed to are ex­
amined and compared to the first name
in the BASIC statement. If there is a
match (if the array has been found), the
program branches to the third section. If
it is not a match, the offset to the next
array is picked up from the variable table
and added to the pointer. Now the point­
er points to the name of the next array in
memory. This process is repeated until
either a match is found or the limit of
array storage is reached. In this case, the
program returns to BASIC but does not
signal the user that a change has not
taken place. Since this is so, the user
should be sure the "old” array has been
previously DIM'd in the BASIC program
before attempting to change its name.

The third section does the actual
work of changing the array name. All
that is done, is that the "new" name is
stored in place of the "old" one in the
variable table.

The program has been designed to be
completely portable, in that it will
execute anywhere in memory. This has
been accomplished by utilizing no
absolute JMPs within the program by
using forced branches. This results in a
program with only relative branches
(which are location-independent), and a
program which may be loaded anywhere
that free memory exists in the Apple.

The first two sections of this pro­
gram are of great versatility, as the
reader may have observed by this point.
These routines may be incorporated in
many other array-handling utilities to
form l ie basis for programs to do such
things as clear an array, equate two
arrays, delete an array, etc.

JMCftO

/AICRO Mike Rowe
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA01824,

Hardware Catalog
Name: Pre-cut Cabinet Kit
System: Ohio Scientific

Superboard II
Description: This cabinet, manufac­
tured by DEE Products, comes as a pre­
cut kit built large enough to house the
Superboard along with the 610 memory
expansion board. The cabinet also has
room for cooling fan, power supply
and, (mounted on die rear panel)
switches, connectors, and jacks. Built
of pine, this handsome cabinet
resembles the C1P cabinet and also
incorporates a 10 degree tilt to the
keyboard, easing use. When finished,
this kit makes a quality protective
home for your Superboard. Gluing and
finishing required.
Price: $20.00 ppd.
Available: DEE Products

150 Birchwood
Lake Marion, IL 60110

Name: Co-Ax Switching
Matrices

Description: Family of co-ax switching
matrices with high speed, long life,
high isolation. Cover DC to 1.26 Hz
range, insertion losses as low as 0.2 db,
available up to 10 x 10 in a single
housing, bidirectional. Available with
IEEE-488, RS-232C bus or telephone or
remove manual interfaces. For switch­
ing video, data, RF.
Price: $2400 for typical 5 x 8

matrix
Available: Mar Lee Switch Co.

9330 N. Central Ave.
Upland, CA 91786

Name: Bytewriter-1
Memory: One line buffer capacity
Language: BASIC
Description: 7 x 7 dot matrix printer,
friction feed, 80 c.p.s., 60 l.p.m., inter­
faces Apple, Atari and TRS-80,
80-columns per line and double-wide
character set.
Price: $299.00
Available: Microtek, Inc.

9514 Chesapeake Dr.
San Diego, CA 92123

Name: Model Q3 Printer
Mechanism

Memory: 45-Character Buffer
Description: The Model Q3 Printer is
an exceptionally rugged, non-impact,
thermal printer which is designed to
provide the optimum in quiet opera­
tion. The Q3 features high resolution

(

plotting capabilities (dot resolution of
0.17) giving the user flexibility to
quickly present meaningful statistic
graphs. The standard 80/132 select-
ability ensures users will have neatly
formatted reports. Only 4 Vi pounds,
the Q3 prints a full USASCII 5 x 7 dot
matrix 96-character set.
Price: $825.00
Available: Computer Devices, Inc.

25 North Avenue
Burlington, MA 01803

Name: Kleen-Line Isolator
System: Model ISO-3
Hardware: Stand-alone A.C. power

conditioning
Description: Eliminates interaction
betw een processor, printer and
peripherals. Also isolates equipment
from power line noise and hash as well
as high-voltage spikes and transients.
Price: $94.95
Available: Electronic Specialists

171 South Main St.
Natick, MA 01760

Name: Pro-Paddle
System: Apple n
Description: Pro-Paddle is the only
heavy-duty paddle available for the
Apple n. It features compact sturdy
metal, construction, long-life switches
with large buttons and tactile feedback,
high accuracy paddle movement,
shielded coaxial cables, and a molded
plug. They are constructed of the
h igh est quality m ateria ls and
workmanship available.
Price: $39.95 includes paddles

and 1/O cable
Author: Computerworks
Available: Rainbow Computing,

Mail Order Dept.
19517 Business Center
Drive

Northridge, CA 91324

Name: Micromodem 100
System: S-100 Bus Computers
Hardware: Low Speed Modem
Description: Direct connect data com­
munications system for S-100 bus com­
puters. Features 110 and 300 baud, full
or half duplex and programmable auto
dial and auto answer capabilities.
Price: $379.00 (suggested retail)
Available: Hayes Microcomputer

Products, Inc. (
5835A Peachtree Comers

East
Norcross, GA 30092

80 MICRO - The 6502/6809 Journal No. 39 - August 1981

The Extended Parser
for the Apple II

This extended parser for the
Apple II or Apple II Plus allows
easy control of functions such
as clear screen, delete to end of
line, flash, and inverse.

Paul R. Wilson
19 Sunset Place
Bergenfield, New Jersey 07621

Back in the June 1980 MICRO (25:15),
Edward H. Carlson wrote a sample exten­
sion for the parser of the Ohio Scientific
computers. He stated that all Microsoft
BASIC languages use this parser. I have
checked both the Apple's and PET’s and
they jive with the parser of the Ohio
Scientific, save in minor points.

The following is an excellent parser
for the Apple n or Apple n Plus as it con­
tains seven useful functions.

Table 1

BASIC PARSER
CALL -9 3 6 #S clears entire
(or HOME] screen
CALL -958 #E clears screen

from cursor to end
CALL -8 6 8 #L clears from cur­

sor to end of line
POKE 50,127 #F puts output into
[or FLASH] flash mode
POKE 50,63 #1 puts output into
(or INVERSE] inverse mode
POKE 50,255 #N restores out­
(or NORMAL] put to normal mode
TEXT #T restores screen

to text mode

Text in table 1 does not do a complete
job. After use of Hi-Res, a later GR will
not function properly. The Hi-Res
screen will appear instead of Lo-Res.
The T-command performs a C056 or

POKE —16298,0 to restore GR's proper
function, after the C051 or POKE
-16303,0. It resets the scrolling screen
to full size, but does not send the cursor
to the bottom of the screen like TEXT. I
only discovered this after I acquired my
Disk Drive, which encourages quick
succession of programs in one sitting. In
many of them, I inserted POKE
-16298,0 to guarantee that a use of Hi-
Res in some previous program will not
interfere with Lo-Res in the new one.

Although Mr. Carlson stated the
syntax requirements of the parser in his
June, 1980 article, some of you may not
have read that, so I will repeat such. A
"96" or must precede the special
one-keystroke commands. In imme­
diate mode, they will be executed before

the BASIC interpreter knows that they
were even there. In deferred mode, the
parser will not accept X #EXPR, but will
execute it at once. You must enter it as
X %EXPR. The parser will change % to
in sending the input line to memory.

Not only do these routines save typ­
ing, but they do not have to be inter­
preted. The BASIC interpreter takes
time in finding and calling up the proper
routines. A REAL compiler would look
up these routines, write code for the
variables for the routine to work on, and
set up 20's and 4C's for the bare routines
In BASIC.

To restore the parser to original form
(and allow the area 300-3CF to be freed
up for new code| one should CALL
-1 5 1 into the monitor, and then enter

*

* EXTENDED PARSER FOR APPLE II
*

* BY PAUL R. WIIflON
*

ERASES 1ST 6 BYTES OF PASSER AND REPLACES WITH

4C 15 03 AND THREE HOP'S

ORG $300

0300 A94C IDA #$4C

0302 85B1 STR ?B1

0304 A91S 1XA #$15

0306 85B2 STA $B2

0308 A903 LTA #$03

030A 85B3 STA $B3

030C A9EA LC& #$EA

030E 85B4 STA $B4

0310 85B5 STA $B5

0312 85B6 STA $B6

0314 60 RTS BEIURN TO BASIC OR PROGRAM

0315 E6B8 m e $B8 FIRST 6 BYTES

0317 D002 BNE LBIA OF NORMAL

0319 E6B9 m e $B9 PARSER CODE

031B A5B8 LBIA LEA $B8

031D 8D2803 STA $0328

0320 A5B9 UDA $B9

0322 8D2903 STA $0329 -
0325 AD0502 LEA $0205

0328 C923 CMP #$23 IS THE # SIGNAL GIVEN?

032A FOOD BBQ LBLC IF SO, REENTER EXTENDED PARSER

032C C925 CMP #$25 IS THE % SICNAL GIVEN?

032E D006 BNE TRrj* IF NOT, BACK TO THE BASIC LINE

0330 AOOO lm #$00 CHANGE % TO # IN STORING THE LINE IN MEMORY

0332 A923 lift #$23

0334 91B8 STA ($B 8),Y

(Continued)

No. 39 - August 1981 MICRO - The 6502/6809 Journal 81

B1:E6 B8 DO 02 E6 B9 N B1L by hand to
patch, and disassemble the parser code
and check it for proper restoration.

To save this routine simply type
BSAVE EXTENDED PARSER, A$300,
L$A0 and the disk system will do the
rest. Lock the file for safety. A later long
file or lack of space may attempt an
over-write of an unlocked file.

A program written with extensive
use of the extended parser commands
will run only with the parser up and run­
ning. Otherwise it will crash with SYN­
TAX ERRORS.

If you carefully enter this as shown
above, and save it to disk, you'll be able
to use it in many Applesoft programs. I
went over the code carefully both in
writing it and in transcribing above, so I
see no margin for errors. Happy parsing!

Paul R. Wilson is currently employed at
Baruch College, NYC, as a lab technician
in Natural Sciences. He has found a self-
sustaining hobby in home computers and
is especially interested in trying to revive
LIFELINE on his Apple II.

4MCRO

0336 4CB700 LBLK JMP $00B7 ;RACK TO PARSING THAT LINE:
0339 20B100 LBLC JSR $OOB1 ;TEST FOR CHARACTER FOLLOWING # OR %
033C C953 CMP 'S ;IS IT AN ' S ’?

033E F01B BEQ LBID ;IF SO, GO TO SCRCLR

0340 C945 CMP 'E ;IS IT AN 'E'?

0342 F01D BBQ LBLE ;IF SO, GO TO ENDCLR

0344 C94C CMP ‘L ;IS IT AN *L'?
0346 F01F BEQ LBLF ;IF SO, GO TO UCLR

0348 C946 CMP 'F rF?
034A F021 BBQ LBLG ;TO FLASH
034C C949 CMP 'I ?I?

034E F024 BEQ LBLH ;TO INV

0350 C94E CMP ’N ?N?

0352 F027 BEQ LBLI ? TO NORMAL

0354 C954 CMP ’T ;T?
0356 F02A BEQ IBLJ ;TO TEXT
0358 4CB100 JMP $00Bl ;IF NCNE OF ABOVE, BACK TO PARSER

035B 2058FC LBLD JSR $FC58 ; SCRCLR— SCREEN GOES DARK
035E -4CB100 JMP $00B1
0361 2042FC Tftt.r JSR $PC42 ;ENDCLR— CLEARS LINE

0364 4CB100 JMP $00B1
0367 209CPC LBLF JSR $FC9C ?INCLR— CLEARS LINE

036A 4CB100 JMP $00B1

036D A97F LBLG LEA #$7F 7 FLASH— OUTPUT INTO FLASH MODE

036F 8532 STA $32
0371 4CB100 JMP $00B1

0374 A93F LELH IXft #$3F 7INV— REVERSE FIELD

0376 8532 STA $32
0378 4CB100 JMP $00B1

037B A9FF LBLI IDA #$FF 7NORM--RESET TO NORMAL OUTPUT

037D 8532 STA $32

037F 4CB100 JMP $00B1

0382 AD54C0 T R T .T IDA $CQ54 7 RESTORES PAGE 1 OF SCREEN ($400-$7FF)

0385 AD51C0 IDA $C051 7 RESTORES TEXT MODE

0388 AD56C0 IDA $C056 7 RESTORES PROPER FUNCTION OF LORES GRAPHICS

038B A900 IDA *$00

038D 8520 STA $20 7 LEFT SII®

038F 8522 STA $22 j AND TOP OF SCREEN REIURN TO FULL

0391 A928 IDA #$28
0393 8521 SEA $21 7 SCREEN RETURNS TO FULL mUTR
0395 A918 IDA #$18

0397 8523 STA $23 7 BOTTOM OF SCREEN GOES TO BOTTOM

0399 4CB100 JMP $00B1

DOUBLE DOS PLUS
for Apple Computers t

$39.00

OTHER UN1QUE PRODUCTS FROM MICROWARE DISTRIBUTING INC.

T H ^ tP P L ^ C A R D ^ T v v ^ id e ^ O O % ^ la s t ic re fe re n c e card for the Apple computer.
Loaded with information of interest to all Apple owners $3.98
PARALLEL PRINTER CARO— PPC-100— A Universal Centronics type parallel printer
board complete with cable and connector. This unique board allows you to turn on and off
the high bit so that you can access additional features in many printers. Use with EPSON,
ANADEX, STARWRITER. NEC. SANDERS. OKI, and other with standard Centronics
configuration / f % $139.00

DOUBLE DOS Plus—a piggyback board that plugs into the
disk-controller card so that you can switch select between
DOS 3.2 and DOS 3.3. Works with the language system elimi­
nating the need in many cases to boot the BASICs disk. Also
eliminates the chore of converting all of your 3.2 disks to 3.3

WHY IS DOUBLE DOS PLus better?
• Nothing needs to be soldered, just plug in and go.
• Since all four ROMS are used, all software will work,

even early 3.1 DOS.
• Because the ROMS fit on the back of the board, it has

the thinnest configuration allowing full use of slot #7
• One set of ROMS is powered up at a time, thus saving

power.
• Full 90-day warranty from TYMAC.

NOTE: APPLE is a registered tradem ark o f APPLE Computer, Inc., Cupertino, CA.
DOUBLE DOS Plus requires APPLE DOS ROMS

* ' t . j j

THE DOUBLE BOOTER ROM— Plugs into the empty 0 8 Socket on the Apple mother­
board or the Integer ROM Card to provide a 13 sector boot without using the BASICs Disk
DoubleBooter may also be used in the MOUNTAIN HARDWARE ROM PLUS board. This
chip will not work in a plus machine unless it contains an Integer board or a ROM Plus
board $2900
DISK STIX—Contains 10 dozen diskette labels with either 3 3 or 3.2 designation Room
for program names and type also S3.98

SOFTWARE ★ * ★ * * * * # * * * ★
SUPER SEA WAR— Hires battleship type simulation $ 13.95
ULTIMATE XFER— A telephone software transfer program, uses DC Hayes Assoc,
micromodem $25 00
ROAD RALLYE— Hires driving game with 5 different full screen tracks $ 15.00
MISSILE C H ALLEN G ER -H ires arcade type game where you defend your cities irom
falling missiles. 8-levels & writes name & high score to disk $19.95
SUPER P1X— Hires screen dump for the EPSON MX-80. inverse or normal, larger than full
page graphics in 2 orientations. Needs Tymac PPC-100 Printer board or we will upgrade
your EPSON board for $25 $39.95
GRAPH-FIT—A hires graphing program that produces bar charts, pie charts and line
graphs. Has auto scaling fea'ure too $25.00

MICRO-WARE
DISTRIBUTING INC.
P.O. BOX 113
POMPTON PLAINS, N.J. 07444
201-839-3478
DEALER INQUIRIES INVITED)!

82 MICRO - The 6502/6809 Journal No. 39 - August 1981

SEARCH

This program is appropriately
entitled SEARCH. It Is a utility
routine designed to aid in
writing and editing programs in
Integer BASIC.

R.C. Merten
12307 Oak Street
Omaha, Nebraska 68144

This program's main function is to in­
put a string of characters, variables,
punctuation, etc. Then, search through
the BASIC program in memory and print
to the current output device any
numbered lines in which a match has
been found.

Several sim ilar programs are
available either commercially or in the
literature. The problem is that most of
them are used with Applesoft, or that
special care and handling must be taken
to separate the ASCII strings from
tokenized material.

SEARCH can be used only on
systems with Integer BASIC and the
Sweet-16 interpreter in ROM. A
language card loaded with Integer BASIC
can also be used. It can be used with
printers or any version DOS without
modification. DOS does not have to be
reconnected after running.

The program will make comparisons
exactly as they would be printed during
a listing of the program (including
leading and trailing blanks). It will also
find control characters [i.e., control D)
scattered throughout the program.

To use SEARCH, first load it in $300
to $3F4 and then type 300G from
monitor level, or CALL 768 from
BASIC. The screen will prompt you
with ENTER STRING. Type in the
characters to be searched for and hit
RETURN. The program will print each
numbered line in which a match is
found. If you wish to stop the display

from scrolling off the screen, push any
key. Subsequently, pushing the space
bar will display one line at a time.
Pushing RETURN will abort the search
program and return to BASIC.

SEARCH uses the Sweet-16 inter­
preter, and since many assemblers can­
not handle these instructions, a hex
dump has been provided. Using the
Sweet-16 to handle 16-bit numbers
reduces the equivalent amount of 6502
code used by 60 to 70 percent.

How the Progiam Works

When called, SEARCH uses the
NXTCHR routine to enter your string
into the standard input buffer starting at

$200. If the only character you enter is a
carriage return, the program immediately
aborts and returns to BASIC. Normally,
though, it starts building an array at
$2000. The array contains the beginning
addresses of all the BASIC program lines.

Next, it saves the output hooks and
replaces them with a pointer to the
subroutine called CATCH. The Integer
BASIC LIST routine at $E04B is called
and every listed character is sent to
CATCH instead of the screen. CATCH
checks each character as it is sent and
tries to match it to the string that is still
sitting in the input buffer. When a
match is identified, the address of the
last listed character in the BASIC pro-

*
*
*
*
*
*
*
*
*
*
* *
ZERO EQU *0 0
R1 EQU *0 1
R2 EQU *0 2
R3 EQU * 0 3
R4 EQU *0 4
RS EQU * 0 5
R6 EQU * 0 6
R7 EQU *0 7
R8 EQU *0 8
LISTM EQU *E 2
PPL EQU *CA
HIMEM EQU *4C
CSUL EQU * 3 6
CSWH EQU *3 7
BUFF EQU * 2 0 0
LNADD EQU *2 0 0 0
FOUND EQU *2 8 0 0
CATCH1 EQU ♦27F0
LENGTH EQU ♦27F1
HOLD EQU *2 7 F 2
YSAV EQU ♦2 7F 4
KBSTB EQU *C 010
KBD EQU ♦COOO
CR0UT EQU *FD8E
COUT EQU ♦FDED
L IS T EQU ♦E04B
L IS T IT EQU ♦E06D
NXTCHR EQU ♦FD75
SU16 EQU *F 6 8 9

(Continued)

SEARCH INTEGER BASIC

BY R .C . MERTEN
1 1 /1 7 /8 0

REVISED
1 1 /2 0 /8 0

No. 39 - August 1981 MICRO - The 6502/6809 Journal 83

gram can now be found at $E2 and $E3.
This address is put into the array called
FOUND which starts building at $2800.

When LIST is finished, the output
hooks are returned to their original
values. Sweet-16 is again called to deter­
mine which line # the FOUND variable
belongs in. The beginning address of
that line # is placed in $E2 and $E3 and
LISflT ($E06D) is called to print that
line to the screen. A short delay follows,
along with a check to see if a key has
been pushed, and the program con­
tinues. At the end, Integer BASIC is re­
entered through the warm start routine
at $E003.

For those who would like to expand
on this program, the routines can easily
be adapted to other purposes. For in­
stance, it is sometimes quite handy for
BASIC programmers to insert disallowed
commands such as HIMEM, LOMEM or
DELETE into a BASIC program. Finding
the HEX address of the command within
the program is difficult, especially if it is
not near the start of the program. With
these routines and a little ingenuity,
finding the exact location in memory of
any command can quite easily be found.

The SEARCH seems to be quite
bulletproof with one exception. If an
Integer program contains an assembly
language routine this will sometimes
cause it to hang up. The problem could
have been corrected but it would make
the SEARCH program greater than one
page long.

If page 3 is already in use the
SEARCH program can easily be re­
located to any other portion of memory.
There are, however, five locations that
must be changed by hand if you are not
using an assembler. These locations are
one load and two jump instructions at
$30A, $328 and $3AB. Also the pointers
to the catch routine which are set up at
$359 and $35D must be changed.

Hope you find what you're SEARCH-
ing for.

For about the last 10 years Richard Merten
has explored the electronics field both as a
job and hobby. He is employed by the
Union Pacific Railroad in the
Communications Department. He bought
his Apple about two years ago and has
enjoyed designing both hardware and
software for it. Some of his projects
include his own version of a 16K
expansion board and a totally
programmable RS-232 communicative
interface card, and a facsimile interface to
allow both transmission and reception of
Apple's Hi-Res screens.

RESTART EQU $E003
WAIT EQU $FCA8

03 00 20 8E FD BEGIN JSR CROUT
0303 A 2 OC LDX #$0C
03 05 A0 00 LDY #$00
0307 8C FO 27 STY CATCH1. * ZERO INPUT COUNT
030A B9 E8 03 PRINT LDA TABLE.Y * PRINT
030D 09 80 □RA #$ 80
030F 20 ED FD JSR COUT.
0 3 1 2 C8 INY
03 13 CA DEX
0314 DO F4 BNE P R IN T . * NEXT LETTER
0316 20 8E. KD JSR CROUT.
03 19 20 75 FD JSR NXTCHR.
031C 8E F I 27 STX LENGTH.
031F A9 00 LDA * * 0 0
0321 80 10 CO STA KBSTB. * CLEAR STROBE
0324 E0 00 CPX #$00
0326 DO 03 BNE OVER.
0328 4C B5 03 JMP DONE.
032B 20 89 F6 OVER JSR SU 16. * * L IN E tt ARRAY * *
032E 12 CA 00 SET R2 PPL.
0331 13 4C 00 SET R3 HIMEM .
0334 17 00 20 SET R7 LNADD .
03 37 63 LDD SR3.
0338 33 ST R 3. * GET HIMEM
03 39 62 LDD SR2. * FIRST LIN E ADD
033A 32 ST R 2.
033B 31 ST R l . * SAVE FOR LATER
033C D3 L00P1 CPR R 3. * AT END OF PROG?
0330 03 07 BC OUT.
033F 77 STD 8 R 7 . » L IN E ADD. ARRAY
03 40 42 LD SR2. * GET INDEX
0341 A1 ADD R l . * MAKE NEU ADD.
0342 32 ST R 2. * SAVE IT
0343 31 ST R l . * SAVE FOR LATER
0344 01 F6 z r L 0 0 P 1 .
0346 23 OUT LD R 3. * HIMEM TO ARRAY
03 47 77 STD 8R 7 .
0348 17 00 28 SET R7 FOUND * SETUP ARRAY
034B 16 00 00 SET R6 ZERO. * FOUND COUNTER
034E 00 RTN
034F AS 36 LDA CSUL. * SAVE CSUL HOOK
0351 8D F2 27 STA HOLD.
0354 AS 37 LDA CSUH.
03 56 8D F3 27 STA HOLD+1
0359 A9 BD LDA #<CATCH. * POINT TO CATCH
035B 85 36 STA CSUL.
035D A9 03 LDA #>CATCH.
035F 85 37 STA CSUH.
0361 20 4B EO JSR L IS T . * L IS T TO CATCH
0364 AD F2 27 LDA HOLD. * RESTORE HOOK
0367 85 36 STA CSUL.
0369 AD F3 27 LDA HOLD+1
036C 85 37 STA CSUH.
036E 20 89 F6 JSR S U 16. * * PRINT LINES * *
0371 26 LD R6. * DONE IF ZERO
03 72 06 40 BZ DONE1.
0374 17 00 20 SET R7 LNADD .
0377 12 00 00 SET R2 ZERO. * FOR COMPARASON
037A 13 00 28 SET R3 FOUND . * START OF ARRAY
037D 63 L00P3 LDD BR3 * GET FOUND ADD.
037E 34 ST R 4. * HOLD
037F 67 L00P2 LDD eR 7 . * ADD. NEXT LN
0380 D4 CPR R 4.
0381 02 FC BNC L 0 0 P 2 .
0383$ C7 PQPD SR7 * BACKUP TUO
0 3 8 4 ! C7 POPD BR7.
0385 D2 CPR R 2.
03 86 06 29 BZ SAME.
0 3 8 8 ! 32 ST R 2.
0 3 8 9 ! 18 E2 00 SET R8 L IS T #
038C 78 STD 0R 8 . * ADD OF LIN E #
0380 00 RTN
03 8E ! 20 6D EO JSR L IS T IT . * OUTPUT LIN E
0 3 9 1 ! A9 00 LDA #$00
0 3 9 3 ! 20 A8 FC JSR U A IT .
0 3 9 6 ! AD 00 CO LDA KBD.
0 3 9 9 ! 10 13 BPL AROUND.
03 9B ! A9 00 LDA #$00
0 3 9 0 ! 8D 10 CO STA KBSTB.
03A 0 ! AD 00 CO L00P4 LDA KBD.

84 MICRO - The 6502/6809 Journal No. 39 - August 1981

■■'-it ’ I ' " ■

03A 3 : C9 A0 CMP H«A0
03A 5 : FO 07 BEQ AROUND.
03 A 7 ! C9 8D CMP H *8D .
03A9J B0 F5 BNE L 0 0 P 4 .
03 a b : 4C B5 03 JMP DONE.
03AE! 20 89 F6 AROUND JSR S U 16. * * BACK AGAIN * *
03 B 1 : F6 SAME DCR R 6. * REDUCE COUNT
03B2*. 07 C9 BNZ LOOP3.
03B 4 ! 00 D0NE1 RTN
03BS: A2 00 DONE LDX tu o o
03 B 7 : 8E 10 CO STX KBSTB.
0 3 b a : 4C 03 E0 JMP RESTART.
03Bd : 8C F4 27 CATCH STY YSAV.
Q3c o : AC F0 27 LDY CATCH1.
03C 3 ! D9 00 02 CMP BUFF. Y
03C 6 : DO 17 BNE CLEAR.
03C 8 ; C8 INY
03C9 • CC F I 27 CPY LENGTH.
0 3 c c : FO 07 BEQ S E T IT .
03CE5 8C F0 27 STY CATCH1.
Q 3 D i: AC F4 27 LDY YSAV.
03D 4 : 60 RTS
03B5S 20 89 F6 SETIT JSR S U 16. * * LOAD ARRAY * *
03D 8 : 12 E2 00 SET R2 L IS T H .
03 d b : 62 LDD (?R2. * ADD FROM BASIC
03DC: 77 STD SR 7. * INTO FOUND ARRAY
0 3 d d : E6 I NR R 6 . * INCREASE COUNT
0 3 d e : 00 RTN
03DFJ AO 00 CLEAR LDY H *00
0 3 E i: 8C F0 27 STY CATCH1. * ZERO STRING COUNT
03E4J AC F4 27 LDY YSAV.
0 3 E 7 ! 60 RTS
03 E 8 : 45 4E 54 TABLE ASC 'ENTER STR IN G '
0 3 F 4 : 00 BRK

CBM/PET? SEE SKYLES
LU
LU
(/)

CBM/PET?
(/)
m
m

“ You mean this one little
Disk-O-Pro ROM will give my
PET twenty-five new commands?
And for just $75.00? Why, that’s only $3.00 a command!”
The Disk-O-Pro in any PET with Version III (BASIC 2.0) ROMs (### COMMODORE
BASIC ###) will give 19 software compatible disk instructions*: 15 identical with the new
BASIC 4.0 (or with 8032 ROMs) compatible with both old and new DOS. Plus 4 addi­
tional disk commands.. .including appending (MERGE), overlaying (MERGE #________)
and PRINT USING, allowing formatting output of strings and numbers on the PET
screen or on any printer.
*NOTE: Old DOS doesn’t recognize three o f the commands.

Those are just 3 o f the important commands— and there are 7 more beauties— on
your Disk-O-Pro that have never been available previously to PET/CBM users. (Skyles
does it again!). . . Beauties like the softtouch key (SET) which allows you to define a key
to equal a sequence of up to 80 keystrokes; like SCROLL whereby all keys repeat as well
as slow scrolling and extra editing features; like BEEP which allows you to play music on
your PET.

The Disk-O-Pro is completely compatible with the BASIC programmer’s Toolkit. The
chip resides in the socket at hexadecimal address $9000, the rightmost empty socket in
most PETS. And for the owners of “ classic” (or old) PETS, we do have interface
boards.

(For those owning a BASIC 4.0 or 8032, even though the Disk-O-Pro may not be suit­
able, the Command-0 is. Just write to Skyles for additional information. Remember, we
have never abandoned a PET owner.)

Complete with 84-page manual written by Greg Y ob .. .who was having so much fun
that he got carried away. We had expected 32 pages.

Skyles guarantees your satisfaction: if you are not absolutely happy with your new
Disk-O-Pro ROM chip, return it to us within ten days for an immediate full refund.
Disk-O-Pro from Skyles Electric Works..$75.00
Complete with interface board (for “ classic” P E T S).. 95.00
Shipping and Handling...................................(USA/Canada) $2.50 (Europe/Asia) $10.00

California residents must add 6% /6'A % sales tax, as required.

' w Skyles Electric Works Visa/Mastercard orders: call tollfree
R 231E South Whisman Road (*00) 227-9998 (except California).

Mountain View, California 94041 California orders: please call (415)
(415) 965-1735 965-1735.

i m o ■" S31AXS 3 3 S 6 i 3 d/IAiaO "

c

APPLE BONUS

APPLE II*
SOFTWARE FROM

P O W E R S O F T
PEGASUS

(a PASCAL based data base system)

P E G A S U S -is a filin g and retrieval system
using the PASCAL program m ing language
providing a general means for storing data
in an orderly fashion. PASCAL code runs
three to five tim es faster than BASIC code
designed fo r a s im ila r app lica tion .

Data stored in the PEGASUS data base may
be m odified, retrieved, and form atted in to
convenient reports. Three types o f data are
supported: character, real, and integer.
Each PEGASUS data base record may con­
tain up to 20 fields.

Data may be entered e ithe r in teractive ly
from the console o r as a batch from a text
file. Records may be m odified a fte r they
have been entered or deleted from the data
base entirely. PEGASUS may a lso be used
to select groups o f records based on the
values o f one or more fie lds. O utpu t may be
to the CRT screen, a prin ter o r a text file .
Thus, PEGASUS may be used to create
printed reports, exam ine data on-line, or in ­
terface w ith the in pu t o r ou tpu t o f o ther
PASCAL programs. Requirements: Apple II,
Plus, or III and tw o 5 V i” d isk drives. Or an 8”
or W inchester type drive. USCD Pascal
Language S ys te m ..

5 V*" D isk Only/$199.95

INCOME STATEMENT
SYSTEM

INCOME STATEMENT S Y S T E M -(S u m -
marized Reports inc lud ing Budget Figures
B a se d on S u p e r C h e c k b o o k I II
transactions.) —An exce llen t program com ­
plement to SUPER CHECKBOOK III. The
system provides for up to 100 income and
expense codes. For each code the system
m ainta ins a to ta l fo r the current m onth, cu r­
rent budget, current year-to-date, and three
p rior year-to-dates. Incom e codes may have
up to six corresponding expense codes. A
“ sort code” feature a llow s account codes to
prin t in a user defined sequence.

Updates to the accounts include current
m onth, end-of-m onth, and end-of-year.
Gross and Net Income Statem ents may be
printed in either account code or sort code
sequence. The Account M aster File List
may be printed by sort code, account code,
or alphabetica lly by account name. De­
tailed transactions fo r each code are
printed and tota led, one code per page, in
code number order.

This system is designed to run in con junc­
tion w ith the SUPER CHECKBOOK III pro­
gram described below. Requirem ents: 48K,
two disk drives, prin ter card, A pp leso ft

Disk Only/$49.95

SUPER CHECKBOOK III
SUPER CHECKBOOK I I I - A vastly im prov­
ed version of our popular se lling program.
W ith new features such as: s im p lified but
powerful transaction entry and m od ifica ­
tion routines, new reconc ilia tion routines,
add itiona l features such as 30 percent in ­
crease in the to ta l num ber o f checks han­
dled, posting of in terest from in terest bear­
ing checking accounts, autom atic te lle r
transactions, bu lle t proof error handling,
and smart d isk routines. Plus the program
s till conta ins the options of bar graphs, sor­
ting, activ ities, and account status. See IN­
COME STATEMENT SYSTEM described
above.

Disk O nly/Applesoft $49.95

Dealer Inquiries Invited

Visa and MasterCard, Check or Money
Order include -$2.00 for sh ipping and
handling. C.O.D. $2.00 add itional.
‘ Apple II and Appleso ft are the registered
trademarks o f APPLE COMPUTER INC.

P O W E R S O F T
P. O. BOX 157

PITMAN. NEW JERSEY 08071
1609) 589-5500

j
No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 85

Applesoft Error Messages
from Machine Language

The methods and data required
to utilize Applesoft error
messages in assembly language
are presented. Use of these
routines should be limited to
assembly language routines that
are interfaced with Applesoft
programs.

Steve Cochard
P.O. Box 236
Boyertown, Pennsylvania 19512

Did you ever wonder how Applesoft
generates its error messages? While
writing an assembly language program
that interfaced with Applesoft I found I
needed more than just the simple "Syn­
tax Error", which was the only one I
knew how to utilize.

I started my search for the "errors"
by looking at the machine code for the
"Syntax Error” message which is
located at $DEC9. It consists of only
two commands:

LDX #$10
JMP $D412

This short routine, it seemed, was in­
tended only to load the X register with
the starting address of the word "SYN­
TAX" in a table of all error messages.
This deduction proved true, and with a
little more searching in the $D412
routine the table was found.

The error message table is located at
$D260 and is 240 bytes long. By loading
the X register with the appropriate index
and then jumping to the $D412 routine,
it is possible to utilize any error message
from machine language or Applesoft.

Table 1 shows the values to be load­
ed into the X register to generate any of
the available 17 messages. Listings 1
and 2 show very short machine and
Applesoft programs to verify that this is
true. Listing 3 shows a program that will
list the entire table.

It should be noted that this pro­
cedure, if utilized in machine language,
performs exactly as if the error had oc­
curred in an Applesoft program. The
error message is printed, the "bell"
rings, the last executed line number is
printed and the program stops. If an
“ONERR GOTO" statement had been
executed previously, the program will
again operate as if the error had occurred
in Applesoft, the object line of the
1' ONERR GOTO'' will be jumped to and
executed. Happy Errors!

Table 1

Value of
X

register Error message
0 NEXT WITHOUT FOR

16 SYNTAX
22 RETURN WITHOUT

GOSUB
42 OUT OF DATA
53 ILLEGAL QUANTITY
69 OVERFLOW
77 OUT OF MEMORY
90 UNDEF'D STATEMENT

107 BAD SUBSCRIPT
120 REDIM'D ARRAY
133 DIVISION BY ZERO
149 ILLEGAL DIRECT
163 TYPE MISMATCH
176 STRING TOO LONG
191 FORMULA TOO COM

PLEX
210 CAN'T CONTINUE
224 UNDEF'D FUNCTION

Listing 1: Enter from the monitor
to interface with program listing 2.

300: LDX $0306
303:JMP $D412

Listing 2: Applesoft program to
print error messages.

10 INPUT "WHAT VALUE OF X ? " ;X
20 POKE 784,X
30 CALL 768

Listing 3: This short program will
list the entire table. Enter it from
the monitor and then type in 300G.

300: LDX #$00
302: LDA $D260,X
305:EOR #$80
307 :BMI $0310
309:ORA #$80
30B:JSR $FDED
30E:LDA #$8D
310:JSR $FDED
313:INX
314:CPX #$FF
316: BNE $0302
318:RTS

Steve Cochard is one of the principals of
Scientific Software, the author of the
"Scien tific Software Sweet 16 Assembler."
He is a structural engineering supervisor
with a large Engineering/Construction
firm. Current activities with the Apple
computer include development of
Structural Analysis and Design systems,
various machine language utilities, and a
machine language floating point
array/matrix manipulation package for use
with Applesoft BASIC.

JUCftO

86 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

APPLE BONUS

UersaWriter

PLAN AH
6 B C 0 E F rCrtIJ' ;_?«‘ii3Pr)f>

• t n j ^ * ' < 1 0 1 2 2 4 5 6 7 3 ^
V. - I<r c

co r
u j t u * 2 ^X

ABraEZHeiKAMHiOTI
P ffT u ♦ X + «

W hat is V ersaW riter?
VersaWriter is an inexpensive drawing
tablet for the APPLE II that lets you
trace a picture and have it appear on
TV display.

VersaWriter is a comprehensive
software drawing package which lets
you color in drawings with over 100
different colors.

VersaWriter is a shape compiler that
converts anything on the screen
automatically into a standard shape
table.

VersaWriter is a text writer for labeling
pictures with text in six colors and
five sizes. Use English or Greek,
upper or lower case letters.

VersaWriter is much more! Draw with
brush, create schematic drawings,
compute area and distance, edit pic­
tures, save, recall and more.

VersaWriter requires ROM APPLESOFT
and 48K memory.

$299 Suggested Retail
UNIQUE OFFER

Send us YOUR disk and $1. We will promptly
return the disk with a slide package of 10
color pictures drawn with VersaWriter.

® 23f t - 2 7 D j j D

9 + 1 6 * 2 3 - 2 8 j >

10- 17 v 24a 29fS

u i 1 8 t 3

12— 1 9 £ : 23f $ 3

13 20 i ^ 3

, < , , r 2£>

4f 29 D> 3 « Q

X ? 3 1 2 > ~

3 2 > ”

□ Enclosed is $1 and my disk.
Send me the slide package.

□ Send more information including
VersaWriter dealers in my area.

DEALER INQUIRIES INVITED.

A D D R E S S

C I T Y S T A T E Z I P J

Send To: Versa Computing, Inc. • 887 Conestoga Circle • Newbury Park, CA 91320 • (805) 498-1956

No. 39 - August 1981 MICRO - The-6502/6809 Journal 87

Trick DOS

Figure 1: Current DOS Commands and Addresses

DEC HEX DEC HEX

4 3 1 4 0 A884 INIT 4 3 2 0 6 A8C6 APPEND

4 3 1 4 4 A888 LOAD 4 3 2 1 2 A8CC RENAME

4 3 1 4 8 A88C SAVE 4 3 2 1 8 A8D2 CATALOG

4 3 1 5 2 A890 RUN 4 3 2 2 5 A8D9 MON

4 3 1 5 5 A893 CHAIN 4 3 2 2 8 A8DC NOMON

4 3 1 6 0 A898 DELETE 4 3 2 3 3 A8E1 PR#

4 3 1 6 6 A89E LOCK 4 3 2 3 6 A8E4 IN#

4 3 1 7 0 A8A2 UNLOCK 4 3 2 3 9 A8E7 MAXFILES

4 3 1 7 6 A8A8 CLOSE 4 3 2 4 7 A8EF FP

4 3 1 8 1 A8AD READ 4 3 2 4 9 A8F1 INT

4 3 1 8 5 A8H1 EXEC 4 3 2 5 2 A8F4 BSAVE

4 3 1 8 9 A8B5 WRITE 4 3 2 5 7 A8F9 BLQAD

4 3 1 9 4 A8BA POSITION 4 3 2 6 2 A8FE BHJN

4 3 2 0 2 A8C2 OPEN 4 3 2 6 6 A902 VERIFY

Apple DOS obviously is a live
entity. It was created by a
supreme being at Cupertino to
mystify, amaze and tantalize us
common folk. Let us literally
turn the tables!

Sanford M. Mossberg
50 Talcott Road
Port Chester, N.Y. 10573

On booting a disk, the DOS command
table (DCT) comes to reside at RAM
locations $A884-$A908 (decimal
43140-43272). The last letter of each of
the 28 DOS commands is represented by
a high byte ASCII character which
signals the end of the command. Other
letters or numerals are written in low
byte code. A zero marks the end of the
DCT. Armed with these simple facts,
we can trick DOS 3.2 or 3.3 into obeying
our whims and desires.

Listing 1 provides code for TRICK
DOS. Following initialization (lines
2000-2060) and optional instructions
(lines 2500-2670), a menu is presented
[lines 600-710), each item of which is
analyzed:

1. Display Current DOS Command
Table: The heart of the entire program is
found in the subroutine at lines
100-180. The starting location (START)
of the table never changes. Lines
120-130 search successive memory loca­
tions in the DCT until a zero byte is
found. The end address of the table, not
including the zero byte, is assigned to
the variable FIN. Line 140 initializes the
array DOS$(*,*), the contents of which
are noted in line 102. Lines 150-180
PEEK DCT locations, fill the two-
dimensional matrix and create a string
|DOS$) which contains every character
in the DCT. Subsequently, the array
variables will be used to format screen
display (lines 860-880 and 1060-1070),
and the string variable will be manipu­
lated to alter the command table by
POKEing data into RAM. The displayed
DCT may be listed to a printer (see
figure 1).

2. Change DOS Command Table:
The program block starting at line 1000
first outputs current commands by
utilizing the routine described earlier.
The command to be changed (OC$) is
requested in line 1080. Since keyboard
input is in low byte code, the high bit of
the final letter is turned on (line 1090).
The validity of the command is checked
in line 1100 and variable PT marks the
position of the command in the array.
An invalid command triggers an error
message (line 1110) and returns the user
to the prior input request. The replace­

ment command (NC$) is solicited in
line 1130 and high byte conversion oc­
curs in line 1140. The subroutine at
lines 400-500 rearranges the DCT. Com­
mands preceding and following the
changed command are contained in T l$
and T3$, respectively; the new com­
mand is placed in T2$. In line 460,
DOS$ is recreated by concatenation of
the above-noted strings. Lines 470-500
POKE the new command table into (
memory. An incidental, but important,
feature of this entire section, and others,
is the effective error trapping (lines

88 MICRO - The 6502/6809 Journal No. 39 - August 1981

1080, 1110, 1120, 1130, 1170, 1180,
1210 and 1240) which prevents poten­
tial crashing of the program and assures
professionally formatted screen display.

3. Restore Normal DOS Command
Table and

4. Try Sandy’s Commands: Data
statements in lines 2100-2110 contain
ASCH code for the normal DCT. Line
1330 reads the data into the variable
NDOS$. A sample table which I have
found useful is coded in lines
2120-2130. Line 1340 produces
MYDOS$. Lines 1380-1390 replace the
resident DCT with either of these
strings, thus restructuring the entire
command table rapidly.

5. Exit Program: At program term­
ination all text and graphics modes
should be normalized. Line 1510 ac­
complishes this by successively turning
off Hi-Res, turning on text page one,
clearing the keyboard strobe and setting
a full text window. Although TRICK
DOS does not require these steps, the
habit is a good one to cultivate. After the
program ends, the new command table
will remain viable in RAM until
rebooting occurs or power is discon­
tinued. If you so desire, the new DCT

C can be preserved permanently by initial­
izing a disk.

Knowing that DOS intercepts and
reviews all commands before the Apple­
soft interpreter can process the com­
mand, several admonitions are appro­
priate. Each newly-created DOS com­
mand should have a character set that
does not duplicate the first letters of any
Applesoft BASIC command. To better
understand this pitfall, imagine that we
have changed "LOAD” to "L ” and
“RENAME” to "RE” . Now, if we type
"LIST" or "LEFT$” , DOS understands
this to mean LOAD (L = LOAD) the file
"1ST" or "EFT$", and the "FILE NOT
FOUND” error message is returned.
Typing "REM" would produce the same
error message as DOS attempted to
RENAME (RE = RENAME) the non­
existent file "M .” So far this is annoy­
ing but not harmful.

Consider the dire results from
changing "INIT" to " I .” Any Applesoft
command beginning with an " I” would
promptly start initializing the disk. This
would be catastrophic and must be
avoided! For the reasons cited above, I
advise you to peruse a list of Applesoft
BASIC commands before modifying a
DOS command. Changing "LOAD" to
"LD ", "RENAME” to "RNM” and
"INIT" to " I * ” would have avoided the

chaos. Choice #4 from the menu will
create a table of "safe” commands that I
have found to be functional.

When you begin using a newly
created DCT, mistakes will be in­
evitable and error messages will pro­
liferate. The DCT commands "LOAD”
and "SAVE” are special, in that they
also exist as Applesoft commands to a
cassette recorder. If either is used er­
roneously, the system will hang. Only
by pressing' 'RESET” can you recover. If
you do not have autostart ROM, altering
these two commands may be more of a
nuisance than an aid.

Experiment freely and enjoy your
newfound power over DOS.

Sandy Mossberg is a physician who had no
computer experience until he purchased an
Apple II in February, 1980. His obsession
is programming. He writes a monthly
column for his computer club's
publication The APPLESHARE Newsletter.
The column is entitled, "Basic Tips and
Technics1' and deals with many aspects of
Applesoft programming and DOS function.

Listing 1
10 REM TRICK DOS

BY SANDY MOSSBERG

20 TEXT : CALL - 936: POKE - 1
6298,0: POKE - 16300,0: POKE
- 16368,0

30 GOSUB 2010: GOSUB 3010: GOSUB
2510: GOTO 610

100 RIM

PEEK CCMMAND TAELE
AND CREATE ARRAY

102 REM ARRAY DOS$(Rl-28,Cl-2)
C1=CCMMAND
C2=START ADDR

104 RIM DC6$=D0S CCMMAND TABLE

106 REM D0S=ADDR CCMMAND TAELE

110 TM = START
120 IF PEEK (TM) = 0 THEN FIN =

TM - 1: GOTO 140: REM FIND
END OF TABLE

130 TO = TM + 1: GCTO 120
140 I = 1: FCR J = 1 TO 29: FOR K

= 1 TO 2:DOS$(J,K) = "": NEXT
K,J:DOS$(l,2) = SER? (START
):DOS? = ”": REM INITIALIZE

150 FOR DOS = START TO FIN
160 IF PEEK (DOS) > 127 THEN D06$(I,1

) = DOS?(I,l) + CHR? (PEEK (DOS)
):DOS? = DOS? + CBR$ (PEEK (DCS)
) :DOS$((I + 1), 2) = STR? (DOS + 1
):I *= I + 1: GOTO 180: REM IF HI
BYTE INCR I

170 DOS$(I,l) = D0S$(I,1) + CHRS
(PEEK (DOS)) :DC6$ = DOSS +
CHR$ (PEEK (DOS))

180 NEXT DOS: RETURN

300 REM

DEC —> HEX

310 HD% = DOS / 256:NBR = HD%: GOSUB
340:HB? = HEX$

320 ID% = FN MOD(DOS):NBR = LD%:
GOSUB 340:LB$ = HEX$

330 HEX? = HB? + LB$: RETURN
340 H% = NBR / 16 + 1:L% = NBR /

16:L = L% * 16:L% = NBR - L +
1

350 HEX$ = MID$ (H$,H%,1) + MID?
(H?,L%,1): RETURN

400 REM

REORGANIZE
CCMMAND TABLE

410 IF FT = 1 THEN Tl$ = GOTO
430

420 Tl? = LEFT? (DOS?, VAL (DOS?
(PT,2)) - START)

430 FCR I = 1 TO LEN (NC?) :T2? =
T2? + MID? (NC?,I,1): NEXT

440 IF FT = 28 THEN T3? = "": GOTO
460

450 T3? = RICBT? (DOS?,FIN + 1 -
VAL (DOS?((PT + 1),2)))

460 DOS? = Tl? + T2? + T3?:T2? =
ftn

170 DOS = START
480 FCR I = 1 TO LEN (DOS?): POKE

DOS, ASC (MID? (DOS?,1,1)):
DOS = DOS + 1: NEXT

490 FIN = FIN + LEM (NC?) - LEN
(OC?)

500 POKE FIN + 1,0: RETURN
600 REM

MENU

610 HOME :TT? = " = = = = = = "
: GOSUB 3110

620 TT? = "TRICK DOS MENU": GOSUB
3110

630 TT? = " = = = = = = " : GOSUB
3110

640 VTAB 6: PRINT "1.DISPLAY CUR
RENT DOS CCMMAND TAELE.": PRINT

650 PRINT "2.CHANGE DOS CCMMAND
TAELE.": PRINT

660 PRINT "3.RESTORE NORMAL DOS
CCMMAND TAELE.": PRINT

670 PRINT "4.TRY SANDY'S CCMMAND
S.": PRINT

680 PRINT "5.EXIT PROGRAM.": PRINT
: PRINT

690 VTAB 17: CALL - 958: PRINT
WHICH CTDICE? GET I

?: PRINT I?:CH = VAL (I?)
700 IF CH < 1 GR CH > 5 OR I? =

*" THEN 690
710 CN CH GOTO 800,1000,1300,130

0,1500
800 REM

DISPLAY CURRENT TAfLE

810 HOME :TT? = " ' ■■ ■
= - - ": GOSUB 31
10

820 TT? = "OKRENT DOS COMMANDS &
ADDRESSES": GOSUB 3110

830 TT? = " =
—■ =—■ ": GOSUB 3110

840 IF NOT FF THEN VTAB 8: INVERSE:
:TT? = " READING DOS CCMMAND
TAELE GOSUB 3110: NORMAL

No. 39 - August 1981 MICRO - The 6502/6809 Journal 89

850 GOSUB 110: VTAB 4: CALL - 9
58

860 PRINT : HTAB 2: INVERSE : PRINT
"DEC";: HTAB 8: PRINT "HEX";
: HTAB 22: PRINT "DEC";: HTAB
28: PRINT "HEX”: NORMAL : PRINT

870 FOR I = 1 TO 14
880 PRINT DOSS(I,2)" ";:DCS = VAL

(DOS$(I,2)): GOSUB 310: PRINT
HEX?" "DQS$(1,1);: HTAB 21: PRINT

DOS?((I + 14),2)" ";:DOS = VAL
(DC6$((I + 14),2)): GOSUB 31
0: PRINT HEX?" "DCS?((I + 14
),1): NEXT

890 IF FF THEN FOR I = 1 TO 5: PRINT

: NEXT : RETURN
900 VTAB 22: PRINT "LIST TAELE T

O PRINTER (Y/N) ? GET I?

910 IF I? = "Y" THEN FF = 1: HTAB
1: CALL - 998: CALL - 958:
PRINT BS: INVERSE : PRINT "
TURN PRINTER CN AND PRESS A

NY KEY ": PRINT : HTAB 10: PRINT
" EXPECT A PAUSE ";: GET 1$:
PRINT : NORMAL : PRINT D$;D

OSS (20,1) ;1: GOSUB 810-.FF =
0: PRINT D?;DOS$(20,1);0: GOTO
610

920 IF 1$ = "N" THEN 610
930 HTAB 1: GOTO 900
1000 REM

CHANGE TAHiE

1010 HOME :TT$ = » = = = = = =
=": GOSUB 3110

1020 TT? = "CHANGE CCMMANDS": GOSUB
3110

1030 TT$ = GOSUB
3110

1040 VTAB 4: CALL - 958: VTAB 8
: INVERSE :TT$ = " READING D
OS CCMMAND TAELE ": GOSUB 31
10: NORMAL

1050 GOSUB 110: VTAB 5: CALL -
958

1060 FOR I = 1 TO 7
1070 PRINT DOSS(1,1);: HTAB 10: PRINT

DOS?((I + 7),1);: HTAB 20: PRINT
DOSS((I + 14) ,1);: HTAB 30: PRINT

DOSS((I + 21) ,1): NEXT
1080 VTAB 14: CALL - 958: INPUT

"TYPE CCMMAND TO BE CHANGED:
";OC$: IF OCS = "" THEN 118

0
1090 OCS = MIDS (OC$,l, LEN (OCS

) - 1) + CHRS (ASC (RIGHT?
(OC$,l)) + 128): REM TURN HI
BIT CN IN LAST LETTER OF
COMMAND

1100 FOR I = 1 TO 28: IF OCS = D
OS$(I,l) THEN PT = I: GOTO 1
130: REM PT=P0INTER TO
POSITION OF CCMMAND IN ARRAY

1110 IF I = 28 THEN PRINT B$: VTAB
16: INVERSE : PRINT " NOT A
VALID CURRENT CCMMAND ": NORMAL
: FOR J = 1 TO 3000: NEXT : GOTO
1080

1120 NEXT I
1130 VTAB 16: CALL - 958: INPOT

"TYPE NEW CCMMAND: ";NC$: IF
NCS = "" THEN 1130

1140 NCS = MIDS (NC$,1, LEN (NCS

) - l) + chrs (asc (R iarr?
(NC?,1)) + 128): REM TURN HI
BIT ON IN LAST LETTER OF
CCMMAND

1150 PRINT B$: VTAB 18: HTAB 3: PRINT

"CONFIRM (Y/N) ? ”;: GET I?:
PRINT 1$

1160 IF 1$ = "Y" THEN VTAB 20: INVERS
E : PRINT " WRITING CCMMAND TABLE

": GOSUB 410: VTAB 18: HTAB
1: CALL - 958: PRINT " CHAN
GE COMPLETED ": NORMAL : GOTO
1220

1170 IF 1$ < > "N" THEN VTAB 1
8: CALL - 958: GOTO 1150

1180 VTAB 18: CALL - 958: PRINT
: PRINT "RETURN TO MENU OR T
RY AGAIN (M/A) ? ";: GET 1$:
PRINT 1$

1190 IF 1$ = "A" THEN GOTO 1080

1200 IF IS = "M* THEN 610
1210 GOTO 1180
1220 VTRB 20: CALL - 958: PRINT

"ANOTHER CHANGE (Y/N) ? ";: GET
IS: PRINT 1$: IF 1$ = "Y" THEN
1040

1230 IF 1$ = "N" THEN 610
1240 GOTO 1220
1300 REM

RESTORE NORMAL TAELE OR
INSTALL SANDY'S TABLE

1310 VTAB 20: INVERSE : PRINT "
WRITING CCMMAND TABLE ";

1320 NDOSS = "":MYDQS$ = ""
1330 FOR I = 1 TO 132: READ D:ND

OSS = NDOSS + CHR? (D): NEXT

1340 FOR I = 1 TO 67: READ D:MYD
OSS = MYDOSS + CHRS (D): NEXT
: RESTORE

1350 DOS = START
1360 IF CH = 3 THEN TM? = NDOSS:

TT? = " NORMAL DOS CCMMAND T
AELE REESTABLISHED ":FIN = S
TART + LEN (NDOSS) - 1

1370 IF CH = 4 THEN TM$ = MYDOSS
:TT$ = " SANDY'S CCMMAND TAB
LE INSTALLED ":FIN = START +
LEN (MYDCSS) - 1

1380 FOR I = 1 TO LEN (TMS): POKE
DOS, ASC (MIDS (TM$,I,1)):D
OS = DOS + Is NEXT

1390 POKE FIN + 1,0
1400 HTAB 1: PRINT TTS: NORMAL :

GOSUB 3210: HTAB 1: GOTO 69
0

1500 REM

END PROGRAM

1510 POKE - 16298,0: POKE - 16
300,0: PCKE - 16368,0: TEXT
: HOME

1520 VTAB 10: INVEBSE :TT$ = ■ E
ND OF TRICK DOS PROGRAM ": GOSUB
3110: NORMAL

1530 V m B 15: PRINT " INITIALIZI
NG A DISK BEFORE REBOOTING":
PRINT "WILL PRESERVE THE CU

RRENT DOS CCMMANDS"
1540 V T M 22: END
2000 REM

INITIALIZE

2010 DIM DOSS(30,2)

2020 D$ = CHRS (4):B$ = CHR$ (7
):SS$ = "

": REM 21 SPACES
2030 H$ = "0123456789ABCDEF"
2040 DEF FN M0D(X) = X - INT (

X / 256) * 256: REM SIMULATE
MOD FUNCTION

2050 START = 43140: REM START OF
TABLE

2060 RETURN
2100 DATA 73,78,73,212,76,79,65,

196.83.65.86.197.82.85.206.6
7,72,65,73,206,68,69,76,69,8
4,197,76,79,67,203,85,78,76,
79.67.203.67.76.79.83.197.82
,69,65,196,69,88,69,195,87,8
2.73.84.197.80.79.83.73.84.7
3,79,206,79,80,69,206,65,80,
80,69,78,196

2110 DATA 82,69,78,65,77,197,67,
65,84,65,76,79,199,77,79,206
,78,79,77,79,206,80,82,163,7
3.78.163.77.65.88.70.73.76.6
9.211.70.208.73.78.212.66.83
,65,86,197,66,76,79,65,196,6
6,82,85,206,86,69,82,73,70,2
17: REM NORMAL TAELE

2120 DATA 73,170,76,196,83,214,8
2,85,206,67,72,206,68,204,76
,203,85,76,203,67,211,82,196
,69,88,195,87,210,80,83,206,
79.208.65.208.82.69.206.67.6
5,212,77,206,78,77,206,80,16
3.73.163.77.65.216.70.208.73
,78,212,66,211,66,204,66,210
,86,69,210

2130 DATA 77,206,78,77,206,80,16
3.73.163.77.65.216.70.208.73
,78,212,66,211,66,204,66,210
,86,69,210: REM
SANDY'S TABLE

2500 REM

INSTRUCTIONS

2510 HOME :TT$ = " = = = = = = = = = " :
GOSUB 3110

2520 TTS = "INSTRUCTIONS": GOSUB
3110

2530 TT$ = " = = = = = = " : GOSUB
3110

2540 VTAB 7: CALL - 958: PRINT
"DO YOU WANT INSTRUCTIONS (Y
/N) ? ";: GET IS: PRINT 1$: IF
IS = "N" THEN RETURN

2550 IF 1$ < > "Y" THEN 2540
2560 POKE 34,4: VTAB 5: CALL -

958
2570 PRINT "l.THE DOS CCMMAND TA

BLE RESIDES AT RAM": PRINT "
LOCATIONS SA884 TO $A908 (

DEC 43140": PRINT " TO 4327
2).": PRINT

2580 PRINT "2.EACH CCMMAND IS RE
PRESENTED BY ASCII": PRINT "

CHARACTER CODES. CNLY THE
LAST LETTER": PRINT " OF A
CCMMAND HAS THE Hlffl BIT CN
SO": PRINT " THAT DOS CAN R
ECOOIIZE THE END OF THE"

2590 PRINT " CCMMAND. tCTE THE
EXAMPLES BELOW:": PRINT : PRINT

LOAD = 4C 4F 41 C4": PRINT

INIT = 49 4E 49 D4": PRINT

" RUN = 52 55 CE": PRINT
: PRINT

2600 PRINT "3.ZERO MARKS THE END
OF THE TAELE,"

90 MICRO - The 6502/6809 Journal No. 39 - August 1981

2610 GOSUB 3210: HOME
2620 PRINT "4.THIS PROGRAM WILL

ENABLE YOU TO ALTER": PRINT
" THE CCMMAND TABLE. YOU MA
Y DESIRE TO": PRINT " CHANG
E 'CATALOG' TO INVERSE :
PRINT "CAT";: NORMAL : PRINT
" OR 'SAVE' TO ": PRINT " "
;: INVERSE : PRINT "SV";: NORMAL

2630 PRINT ". BE SURE THAT YOUR
NEW DOS COMMAND": PRINT " D
OES NOT DUPLICATE THE FIRST
PART OF”: PRINT " AN APPLES
OFT BASIC CCMMAND, OIHEIWISE
": PRINT ' UNUSUAL EVENTS M
AY OCCUR. EXPERIMENT!"

2640 PRINT " TIREDNESS OR SILLI
NESS MAY RESULT IN": PRINT "

WEIRD SYMBOLS!!!": PRINT
2650 PRINT "5.THESE MODIFICATION

S WILL TRIGGER A n: PRINT "
SYNTAX ERROR IF A DIRECT OR
DEFERRED": PRINT " CCMMAND
UTILIZES 'NORMAL' TERMINOLOG
Y."

2660 PRINT "6.";: INVERSE : PRINT
"BUCK DOS";: NORMAL : PRINT
" IS MENU-DRIVEN AND SELF-":
PRINT " PROMPTING. HAVE FU

N U!"
2670 POKE 34,0: GOSUB 3210: RETURN

3000 RIM

TITLE PAGE

3005 RIM SF APPLE CORE FORMAT

3010 INVERSE : VTAB 4
3020 TT? = SS?: GOSUB 3110: GOSUB

3110
3030 TT? = " TRICK DOS

": GOSUB 3110
3040 TT$ = SS$: GOSUB 3110: GOSUB

3110
3050 TT$ = " BY SANDY MOSSBERG

": GOSUB 3110
3060 TT? = SS$: GOSUB 3110: GOSUB

3110: NORMAL
3070 VTAB 16:TT? = "CUSTOMIZE YO

UR SET OF DOS COMMANDS!": GOSUB
3110

3080 GOSUB 3210: RETURN
3100 REM

PRINT CENTER

3110 WIDTH = 20 - (LEN (TT$) / 2
): IF WIDTH < = 0 THEN PRINT
TT?: RETURN

3120 HTAB WIDTH: PRINT TT?: RETURN

3200 REM

CONTINUE/END

3210 VTAB 23: HTAB 12: PRINT " [E
SC] TO END"

3220 VTAB 24: PRINT TAB(8);"[S
PACE] TO CONTINUE ";

3230 PRINT "[]";: HTAB 29: GET
ZZ$: IF ZZ? = CHR? (27) OR
ZZ? = CHR? (3) THEN TEXT :
HOME : GOTO 1510

3240 IF ZZ? = CHR? (32) THEN RETURN

3250 CALL - 868: CALL - 1008: GCTO
3230: REM

JMCftO

New Publications
(Continued fiom page 74)

Programming Languages; Elem ents of
BASIC (Line Numbers Revisited, Blank
Spaces, Variables, Arrays, Expressions);
BASIC Statements (Remarks, Assignment
Statements, Declaring Array and String
Size, Branch Statem ents, Loops, Sub­
routine, Conditional Execution, Input and
Output Statements, Halting and Resuming
Program Execution); Functions (Numeric
Functions, String Functions, System Func­
tions, User-Defined Functions, Function
Nesting). Advanced BASIC Programming—
Direct Access and Control (Memory and Ad­
dressing); Using Peripheral Devices; Pro­
gram Output and Data Entry (More About
the PRINT Statement, PRINT Formatting
Functions, Cursor Control and Special
Video Effects, Text Windows, The CHR$
Function: Programming Characters in
ASCH, Programming Data Entry, Forms
Data Entry, Formatting Output, Program­
ming Printers); Storing Data on Cassette;
Program Optimization [Faster Programs,
Compact Programs); Debugging; Immediate
and Programmed Mode Restrictions. The
Disk II— (About Disks, How Data is Stored
on Disks, Locating Tracks and Sectors,
Write Protecting); The Disk Operating
System (Versions of DOS, Initializing
Disks, Disk Files, Diskette Directory,
Track/Sector List, Disk Crash); Booting the
Disk II (How to Boot DOS); Beginning Disk
Commands (CATALOG, LOAD, The Disk
Version of the RUN Command, Specifying
the Drive Number, Slot Specification,
Volume Specification); More Disk n Com­
mands (INIT, SAVE, DELETE, LOCK,
UNLOCK, RENAME, VERIFY); Using DOS
Commands in Programs; Using D isk Files
(Using Sequential Files, How to Append to
Sequential Files, The POSITION Com­
mand, Using Random-Access Files, A Prac­
tical Random-Access Example, The Byte
Parameter); Other DOS Commands (EXEC,
MAXFILES, Using DOS Debugging Aids);
Machine Language (Binary Image) Disk
Files (BSAVE, BLOAD, BRUN). Graphics
and Sound—Low-Resolution Graphics (Set­
ting Up the Graphics Page, Graphics Pro­
gramming Statem ents); High-Resolution
Graphics (Which Page Should You Use?,
Setting Up the Graphics Display, Alter­
natives to HGR and HGR2, High-Resolution
Colors, Plotting Points and Lines); Using
High-Resolution Shapes) Defining Shapes,
Assembling the Shape Table, Entering the
Shape Table, Shape Drawing Commands);
Apple II Sound (Operating the Speaker).
M achine Language M onitor— (Accessing
the Monitor, Leaving the Monitor); Func­
tions of the Monitor (Examining the
M icro p ro ce sso r R e g is te rs , A lte rin g
Memory, Altering the M icroprocessor
Registers, Saving and Retrieving Memory
with Apple n Peripherals, Moving and Com­
paring Blocks of Memory, The GO Com­
mand, Using the Printer, The Keyboard
Command, Setting Display Modes, Eight-
Bit Binary Arithmetic Using the Monitor,
User-Definable Monitor Command); The

M ini-Assem bler (Accessing the M ini-
Assembler, Monitor Commands in the
M in i-A ssem b ler, Leaving th e M in i-
Assembler, Instruction Formats, Using the
Mini-Assembler, Disassembled Listings,
Testing and Debugging Programs, Inte­
grating Your Program with BASIC). Com ­
pendium o f BASIC Statements and Func­
t io n s — (Im m ed iate and Program m ed
Modes/BASIC Versions, Nomenclature and
Format Conventions); Statements (listed
a lp h a b e t ic a l ly) ; F u n c t io n s (l is te d
alphabetically). Appendices: A. Derived
Numeric Functions; B. Editing Commands;
C. Error Messages [Integer BASIC Error
Messages, Applesoft Error Messages, DOS
Error Messages); D. Intrinsic Subroutines;
E. Useful PEEK and POKE Locations,- F.
BASIC Reserved Words (Integer BASIC,
Applesoft, DOS); G. Memory Usage
|General Memory Organization, The BASIC
Language Interpreters, DOS Memory Re­
quirements, Integer BASIC Memory Usage,
Applesoft Memory Usage); H. D isk n For­
m at (T h e T ra c k / S e c to r L is t , T h e
Directory); I. ASCII Character Codes and
Applesoft Reserved Word Tokens; J.
Hexadecimal-Decimal Integer Conversion
Table; K. Bibliography; L. Screen Layout
Forms. Index.

General Computet

Computer/Law Journal is a quarterly
which began publication in 1978. It is
published by the Center for Com­
puter/Law (P.O. Box 54308 T.A., Los
Angeles, California 90054). The journal
covers such subjects as Patent Pro­
tection for Computer Software;
Computer-Assisted Legal Research;
Current Developments in Computer
Law; Computer-Related Evidence Law;
Electronic Funds Transfer Systems; and
Computer Crime. Back issues are
available. An annual subscription is
$60.00 per volume in the U.S. and
Canada, elsewhere $64.00.
ISSN: 0164-8756.

Bio-Medkal

Medical Computer Journal: The Jour­
nal for Computers in Clinical Practice
is a quarterly publication of the
Doctor's Computer Club (42 East High
Street, East Hampton, Connecticut
06424). It is supplemented by a quarter­
ly newsletter called Dr. Com Putei’s
Report. The journal averages 24 pages
per issue and the newsletter 4 pages.
The journal covers such subjects as
clinical practice, laboratory, ECG,
X-ray, and system description. Both the
journal and newsletter publish software
programs. Subscription rates are $15.00
for members, $25.00 for organizations
and anyone outside North America,
and $10.00 for students and physicians
in training.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 91

Sorting with Applesoft

Applesoft BASIC makes special
demands which often severely
degrade the efficiency of a
theoretically efficient sorting
algorithm. This article presents
Applesoft BASIC code for a
sorting algorithm which avoids
most of these special problems.
Thus, this algorithm may be the
best one to use In programs
which require a large amount of
sorting.

Norman P. Herzberg
32 Gulick Road
Princeton, New Jersey 08540

No, this is not another article on Shell's
sort, or Heap sort. If you thought it was,
then this article probably is. just what
you've been looking for.

Sorting alphanumeric data on the
Apple using Applesoft BASIC can be
very painful, because of "the dreaded
garbage collection." As the Applesoft
interpreter encounters string variables,
it fills memory with the values of these
strings, even though there may be only a
few variables receiving these values. In a
surprisingly short time memory is filled
with old discarded string values (gar­
bage). Once memory is full, Applesoft
will ‘tidy things up' throwing out all the
garbage (outdated data) that has accumu­
lated, so that only the current value re­
mains for each variable in the program.
In the worst cases this will take several
minutes of computing time, even
though the entire procedure is carried
out in machine language. Forcing gar­
bage collection, by calling the Applesoft
function FRE(O) before memory gets full
is of no help. The time it takes to per­
form the FRE function seems only to de­
pend on the complexity and size of the
siring arrays in a program, not on the
amount of garbage that has accumulated.

One requirement of an ideal sorting
program for Applesoft is clear. I would
like to sort without ever referring to any

MICRO - The 6502/6809 Journal No. 39 - August 1981

1 REM SORT DEMO
3 RIM NOBMAN P. HERZBERG
4 R£M
10 GOTO 1010
500 REM SORT SUBROUTINE
510 FOR I = 0 TO NR - l:S(l) = 1 + 1: NEXT :S(NR) = 0
520 START = 1: IF NR < 2 THEN 700
530 F = 1:TM = 0:1 = S(0)
540 IF L > 1 THEN 650: REM SORT CN VALUE
550 FOR DX = 0 TO 1: IF I < = 0 THEN 580
555 C = I:T1 = 0:US = I:UP = 1 * 1 = S(l): IF I < = 0 THEN 575
560 FOR JJ = 0 TO 1: IF N$(I,S) < N?(C,S) THEN S(T1) = I:T1 = I

n
GOTO 57

u
565 S(UP) = I:UP = I
570 I = S(I):JJ = (I < = 0) : NEXT
575 S(UP) = I:S(T1) = ~ US:I = S(0): GOTO 590
580 IF F THEN F = 0:STAFT = S(0)
585 I = - I:S(TW) = I:TM = 1:1 = S(I)
590 DX = (1 = 0) : NEXT
595 GOTO 700: REM NOW MOVE THE DATA
650 TOR DX = 0 TO 1: IF I < = 0 THEN 680
655 C = VAL (N?(l,S) + " "):T1 = 0:US = I:UP = 1:1 = S(I): IF I < = 0 THEN

675
660 FOR JJ = 0 TO 1: IF VAL (N?(I,S) + “ ") < C THEN S(T1) = I :T1 = I: GOTO

670
665 S(UP) = I:UP = I
670 I = S(I) :JJ = (I < = 0) : NEXT
675 S(UP) = I:S(T1) = - US:I = S(0): GOTO 690
680 IF F THEN F = 0:SEART = S(0)
685 I = - I:S(TM) = I:TM = 1:1 = S(I)
690 DX = (1 = 0) : NEXT
700 S(0) = ABS (START)
710 PRINT " SORTING": REM NOW REARRANGE THE DATA
720 I = S(0): FOR JJ = .1 TO NR:R(JJ) = 1:1 = S(I): NEXT
730 FOR I = 1 TO NR:S(R(l)) = I: NEXT
740 FOR J = 1 TO NE - I: FOR I = 1 TO NH: & N?(J,I),N?(R(J),I): NEXT
750 TEMP = R(J) :R(S(J)) = TEMP:R(J) = JSCTOIP) = S(J) :S(J) = J
760 NEXT J
800 PRINT G$">>>>> SORTED"
810 PRINT "PRESS SPACE-BAR TO CONTINUE ";: GET Z$: RETURN
1000 REM INITIALIZATION
1010 D$ = CHR? (4):G$ = CHR$ (7): TEXT : HOME
1020 VTAB 10: HTAB 15
1030 PRINT "SORT DEMO "
1040 GOSUB 5010: REM &-STRING SWAP INITLZ. !! DESCRIBED IN CALL A.P

• P.L.E. JAN. 1980 PG. 37
1050 NR = 50:NH = 2: REM 50 LONG FIIZ WITH 2 FIELDS
1060 DIM N?(NR,NH),R(NR),S(NR),H?(2): REM HEADER ARRAY H? IS CNLY FOR

THE DEMD
1070 H$(l) = "NAME":H$(2) = "ADDRESS"
1080 FOR I = 1 TO NR:C$ = "":N% = RND (1) * 26 + 193:C? = C? + CHR? (N

%):N% = RND (1) * 26 + 193:C$ = C? + CHR? (N%):N$(I,1) = C?: NEXT

1090 FOR I = 1 TO NR:N% = RND (1) * 9 + 1:N$(I,2) = STR? (N%) NEXT
1500 REM MAIN LOOP
1510 TEXT : HCME : PRINT
1520 PRINT " --------- SORT D E M O --------- "
1530 PRINT "1. LIST DATA "
1540 PRINT “2 . SORT DATA "
1550 PRINT "3. EXIT "

(Continued)

1 56 0 PRINT : INPUT "WHICH # ? (1 , 2 , 3) ? " ;Z $:Z = VAL (Z$ + " ")
1 57 0 IF Z < 1 OR Z > 3 THEN 156 0
1 58 0 IF Z = 3 THEN PRINT " O .K ." : EMD
1 59 0 ON Z GOSUB 3 0 1 0 ,2 0 1 0
160 0 GOTO 1510
2 00 0 REUS OR T
201 0 MF = 1 : GOSUB 4 5 1 0
202 0 INPUT "ENTER # OF FIELD FOR SOFT " ; S $:S 5 = S$ + " " : S = VAL (S $) : IF

S < 1 OR S > NH THEN 202 0
2030 PRINT : PRINT "DO YOU WANT TO SO R T :" : PRINT
2040 PRINT "1 ALPHABETICALLY"
2 05 0 PRINT "2 NUMERICALLY"
2060 PRINT " OR"
207 0 PRINT "3 EXIT "
2 08 0 PRINT " (SORTING TAKES ABOUT " 1 0 + INT (. 1 5 * NR * LOG (N R))" SE

C .) " : PRINT
20 9 0 INPUT "WHICH # " ;L $:L $ = L$ + " " : L = VAL (L $)
21 0 0 IF L < 1 OR L > 3 THEN 20 9 0
21 1 0 IF L = 3 THEN RETURN
21 2 0 PRINT : PRINT "SORTING GOSUB 510
213 0 RETORN
3000 REM REPORT
30 1 0 HCME
30 2 0 PRINT "REPORTING N$ IN FORM (NAME,ADDRESS) PRINT
3030 XX = 0
30 4 0 FOR I = 1 TO NR:XX = XX + 1 : I F XX = 5 THEN XX = 1 : PRINT
305 0 PRINT " (" ;
30 6 0 FOR H = 1 TO NH - 1 : PRINT N $ (l ,H) ; " , " ; : NEXT
307 0 PRINT N $ (I ,H) ; ")
30 8 0 NEXT I
3090 PRINT
3 1 0 0 VTAB 2 3 : PRINT "PRESS SPACE-BAR TO CONTINUE GET Z$
3 1 1 0 RETORN
4 5 0 0 REM SUB MENU
4 5 1 0 HCME : PRINT "SEU2CT FRCM :": PRINT
4 5 2 0 I F MF = 0 THEN PRINT " 0 "H $(0)
4 5 3 0 FOR I = 1 TO NH: PRINT I " " H ? (l) : NEXT I : PRINT
4 5 4 0 RETURN
5 000 REM & -STRING SWAP
501 0 FOR I = 8 1 0 TO 8 5 5 : READ P P: POKE I ,P P : NEXT
5 02 0 CALL 8 1 0
5 0 3 0 REIURN
504 0 REM MACHINE LANGUAGE POKES
5 0 5 0 DATA 1 6 9 , 7 6 ,1 4 1 , 2 4 5 ,3 , 1 6 9 ,5 8 , 1 4 1 ,2 4 6 , 2 ,1 6 9 , 3 ,1 4 1 , 2 4 7 ,3 , 9 6 ,3 2 , 2 2 7 ,2 2

3 ,1 3 3 ,1 3 2 ,1 2 4 ,3 2 ,1 9 0 ,2 2 2 , 3 2 ,2 2 7 , 2 2 3 ,1 6 0 , 2 ,1 7 7 , 1 3 3 ,7 2 , 1 7 7 ,1 3 1 , 1 4 5 ,1 3 3
, 1 0 4 ,1 4 5 , 1 3 1 ,1 3 6 , 1 6 ,1 4 3 , 9 6 ,0 ,

string arrays at all, and if that is impossi­
ble, I certainly want to avoid garbage
collection. I was motivated to find such
a sorting algorithm while trying to im­
prove the File Cabinet data management
program provided through Apple's Soft­
ware Bank. For this program to be any
real use, it should be possible to sort
through a list of some 100-odd addresses
in a reasonable amount of time.

One tool for accomplishing this ap­
peared in the January 1980 issue of Call
A.P.P.L.E. On page 37 appeared a String-
Swap subroutine which generates no ex­
tra garbage strings at all! See lines
5000-5060 for the routine, and line 740
for its use. (The Ampersand calls the
routine.) Using this routine and a crude
exchange sort would seem to be the way
to avoid most of the garbage collection
problem. However, I have no grudge
against garbage collection itself, only
the large amount of time it takes. A poor
exchange sort algorithm wastes more
time than it saves.

My next idea was to adopt Shell's
sort and the String-Swap subroutine.
The key requirement is to continue to
avoid the garbage collection problem.
This can be accomplished by sorting an
alphanumeric array as a linked list, re­
arranging the links rather than the items
themselves. If one then walks from link
to link, one travels through the list in
order. Of course most people want to
sort th e ii data, not data in a form some­
one else decides they should have col­
lected. And where are the links in File
Cabinet? The answer is, although there
may be no links connecting the data we
have, these links can be easily created.

Suppose the array to be sorted is
called N$(I,J) where I = 1,...,N R ,
J = 1,...,NH. All you need do is create an
array R of dimension NR, and set
R(I) = I. Now R(I) points to the I-th item
on the list. Instead of exchanging the
elements N$(I,J) one need only change
the values of the pointers R(I). At the
end of the sorting process, one can then

use the String-Swap routine to move the
data into place without any string
storage overhead. I actually did this, but
found a new source of dissatisfaction.
Shell's sort, and Quick sort too for that
matter, are not 'stable' sorts. This
means that if I sort an address list by last
name, and then by state, the names
within each state will no longer be in
alphabetical order.

Recently I came across an article
describing a variant of Quick sort that is
stable. It is this algorithm which I will
discuss below. The data to be processed
must be augmented by a set of links S,
rather than with pointers R. To imple­
ment this sorting algorithm we start by
creating an array S, where S(I) =1 +1 for
I = 0 j... ,N R -1, and S(NR| = 0. The ele­
ment S(I) points to the item that comes
after item I. The initial list item is
pointed to by S(0), and so initially is 1.
The value 0 in S|NR) indicates that there
is nothing following item NR. The list
can now be sorted by changing the
values in the S array. After the list has
been sorted, if the smallest item was the
K-th on the original list, then S(0] = K,
and S(K| will point to the next smallest
item, and so on. The relationship" be­
tween the S links and the R pointers is
given by the algorithm in line 720 in the
program below. As you will note, in line
730 we replace the values in array S,
which have served their purpose, with
the values of the inverse of the function
R. These backward pointers will be used
in the actual process of rearranging the
array N$, without ever using any other
string array. (See line 750.)

The code itself is quite opaque, and I
can do no more than refer the interested
reader to the original paper: B. Cheek,
"A Fast and Stable List Sorting
Algorithm/' The Australian Computer
Journal, vol. 12, no. 2, May 1980.

There are two misprints in that
"paper, one trivial, and one not so trivial.
In the line corresponding to my lines
575,675 the paper omits the minus sign
in front of US (which is called uperstrt
in the paper). Cheek also omits taking
the absolute value of START: line 700.

Cheek gives timing estimates which
show that this algorithm is as good as
Quick sort. The 'disadvantage' of requir­
ing the creation of linking fields is, for
us, a great advantage, and the fact that it
is a stable sort makes me believe it is the
proper one to use in any Applesoft appli­
cation where more than a couple of
dozen items need be sorted.

The sample program that illustrates
this algorithm has been set up so that it
may easily be modified for inclusion as a

No. 39 - August 1981 MICRO - The 6502/6809 Journal 93

part of File Cabinet. You may want to
change the names of some of the arrays
if you use it as a module in another pro­
gram. The sorting is done in the sub­
routine at lines 500-810. Lines 500,710,
and 800 may be omitted, and line 810
replaced with 810 RETURN. The actual
sorting algorithm appears twice, in lines
550-590, where alphabetic data is
sorted, and in lines 650-690 where
numeric data is sorted. (If your data has
embedded blanks you will need both
sorts. Try comparing " - 123” “ +123”
“ 123’’ and 11 23 " and see what Apple­
soft thinks.)

The two sections of code are iden­
tical except for the use of the VAL func­
tion in the second sort routine, and
there are other interesting differences. In
line 655 we save the value of
VAL(N$(I,S() as C, and then in the loop
starting at line 660, C is compared with
new values VAL(N$(I,S)] until I
becomes :£ 0. In line 555, however, we
do not save the string array N$(I,S), only
the current value of I. In the loop start­
ing at line 560 comparisons are made
between N$(C,S) and N$(I,S). Thus the
index calculation (locating N$(C,S)) is
made in each iteration of the loop. This
'bad' programming practice avoids
introducing a string variable C$, and so
avoids producing garbage.

The rest of the program is included
just for demonstration purposes. It
creates a random list of 50 two-letter
names and one-digit addresses. Sorting
this list, first by address, and then by
name, will demonstrate the speed and
stability of the sorting algorithm. The
timing estimate is just that, an estimate
of the running time. I added 10 seconds
for psychological reasons. Note that, as
with Quick Sort, it is possible for the
sort to take much longer than average.
In particular, if the data is already
sorted, the running time will be much
worse than average. If you fear that this
will happen, sort first on some other key
to 'randomize' the data before sorting on
the key of interest. This will bring the
sorting time down to only twice the ex­
pected value.

APPLE BONUS

Norman Herzberg is a professional
mathematician who has been interested in
computing and computers since his
undergraduate days at Columbia College.
At that time he was introduced to an
I.B.M . "com puter" that was programmed
via a plug board. About 18 months ago he
gave up his TI 59 calculator for an Apple,
to see what it could do. He invites any
and all readers with similar interests to
contact him through the SOURCE
CL1279.

JMCftO

SOFTWARE AUTHORS!
for Apple, Atari, TRS-80, NEC, Hitachi.. . .

Br^derbund Software is looking for new authors to join its
international team of programmers. If you have a product for
the micro market, let us show you the advantages of working

*'<v)th our team of design, production and distribution
specialists.
Call or write for our free Authors Kit today or send us a
machine readable copy of your work for prompt review under. -
strictest confidence. ^ ^

.Brtiderbund SoPtnjop
...l i ^

. So* 3266, €ugene, Oregon 97403 (503) 343-9024— uwdiuiuiiil

September Brings Apple Graphics!
September Double Apple Bonus

Features Hi- and Lo-Res Graphics
See these articles in our next issue:

• True 3-D Images on the Apple II — Using
stereoscopic pairs, users can produce true
3-D images.

• Shaper Utility Program — A utility program
for managing shape tables.

• Paddle Hi-Res Graphics Shows how to use
paddles to create shape tables.

• Apple Bits — The first of a series on how to
better use the Apple’s low-resolution
graphics.

• Lo-Res Graphics and Pascal — Tells how to
use low-resolution graphics with Pascal.

1 4 A p p l e A r t i c l e s !

Besides these attention-getting graphics articles,
MICRO’S September issue will contain another 9
Apple articles — 14 Apple articles altogether!

94 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

A STATISTICAL ANALYSIS
AND FILE MAINTENANCE SYSTEM

FOR THE APPLE If™ MICROCOMPUTER
As a Subset Language of P-STAT™ 78...

A-STAT™ 79 computes'.
FREQUENCIES

BI-VARIATE TABLES - CHI SQUARES
CORRELATION MATRICES
MULTIPLE REGRESSION

RESIDUALS
APPLE PLOT INTERFACE

APPLE FILE CABINET INTERFACE
FILE SORT

AGGREGATION
REPORT WRITING

COMPLETE TRANSFORMATION LANGUAGE
READS VISICALC FILES

A-STAT™ 79
Uses Standard DOS Text File and EXEC's

48K Version — All programs in Applesofttm
A-STAT™ 79 is available from:

ROSEN QRANDON ASSOCIATES
296 PETER GREEN ROAD

TOLLAND, CONNECTICUT 06084
(203) 875-3541

A-STAT™ 79 on Disk with 95-page manual... $125.00

A pple il tm is a tra d e m a rk o f th e A pple C o m p u ter Inc.
P-STA T tm 7Q jS a tra d e m a rk o f P-STA T In c ., Princeton, N.J.
A -STA T tm 7 9 is co py righted b y G a ry M. G ran don, Ph.D .

SBCS

ON TOP
Organize your business with

accounting software from SBCS:

• General Ledger
• Accounts Receivable
• Accounts Payable

The above programs can be used alone or inte­
grated. They include extensive error checking
and data entry prompting, numerous reports,
departmentalizing, and budgeting. Detailed doc­
umentation included.

Get on top of things! Call or write today.

SMALL BUSINESS COMPUTER SYSTEMS
4140 Greenwood, Lincoln, NE 68504 (402) 467-1878

FINANCIAL MANAGEMENT SYSTEM

A FAST. EAST TO USE ACCOUNTING SYSTEM DESIGNED FOR NOME AND BUSINESS
Enter an entire m onth’s CHECKING, CHARGE CARD, and CASH accounts in ju s t a tew
m inutes using personalized m acro lists . INSTA NT ERROR CORRECTION. A udit all
files by Code and M onth w ith yea r-to -d a te totals .

•PERFECT FOR TA X ACCOUNTING
SELF PROMPTING, ERROR AVOIDING ENTRY SYSTEM w ith 1 to 3 KEYSTROKE
ENTRIES and AUTO M ATIC DATE, CODING and NUMBER SEQUENCING.

* Printer routines fo r listing d isk files , balance reconcile, search, and audit reports.
C onfigure program to m atch a lm o st A NY PRINTER.

* Enter yo u r ow n ITEM and CODE MACROS, up to 100 each.
* M ake specific and expanded searches em ploying com plete use of m acro lists.
•4 8 K w ith ROM APPLESOFT and DISK required, (p rin te r optional)
* PRICE: 28.95

FINANCIAL MANAGEMENT SYSTEM II
ALL THE ABOVE FEATURES PLUS *

•N E W BUDGET MANAGER - Plan, balance, and review your budget. Then generate
COMPLETE reports w ith sum m ation fo r any 1 - 1 2 m onth 'period.

"SINGLE or DUAL DISK com p atib le. C onfig ure program to either disk system .
* PRICE: 38.95

GROCERY LIST
A USEFUL H0USEH0L0 PROGRAM DESIGNED TO ORGANIZE SUPERMARKET SHOPPING

Shoppers w ill INSTA NTLY be ab le to use th is easy, se lf-p rom pting program . S can a
file of up to 500 USER DEFINED ITEM S. Choose those needed w ith a single k ey ­
stroke. Then print a shopping lis t ORGANIZED BY TABLE NUMBER, SECTION, or tour
letter code such as "DARY", "BAKE" or "DELI."

* 48K APPLE w ith d isk and prin ter required. (APPLESOFT)
* PRICE: SI 9.95

D R JARVIS COMPUTING
1039 CADIZ DR. - S IM I, CA 93065

PHONE (805) 526-0151
C heck. V IS A or M ASTER CARD accepted DEALER INQUIRIES INVITED

L I S P for the Apple II

Pegasys Systems' n e w P-LISP in te rp re te r is a fu ll im ­
p le m e n ta tio n o f th e w e ll-k n o w n A rt if ic ia l In te l l i­
gence language. W r it te n in m a c h in e c o d e , th is
p o w e rfu l in te rp re te r in c lu d e s th e fo llo w in g fea tu res:

• O ver 55 functions im plem ented
• Extensive 45-page User Manual
• Full function trace
• Fast, efficient G arbage C ollector
• Supplied with function editor and pretty-printer
• Runs in 32 or 48K Apple II or II + with disk
• ELIZA and other sam ple programs included
• Special language card version provided

P-LISP is s u p p lie d o n d isk w ith U ser M a n u a l fo r
$99 .95 . T he m a n u a l is ava ila b le separa te ly fo r
$10 .00 . Please sp e c ify D O S 3.2 o r 3.3.

PEGASYS SYSTEMS, INC. . ^ G A S y
4005 C h e s tn u t S tree t * ^ ‘S ’

P h ila d e lp h ia , PA 19104 V C 2 r

Orders only: 800-523-0725
PA res idents and in q u ir ie s : (215) 387-1500

Pennsylvania residenis ,ulri (A. sales i .ix ____ _

Apple is <i trademark nl Apple Computer. I nt j£ ^^ i

Good software is no longer a myth.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 95

T.M.

S E N S I B L E S O F T W A R E , I N C . is p leased t o in troduce ...
OUR 1981 COLLECTION OF SUPERIOR SOFTWARE FOR THE APPLE COMPUTER...

A P P L E S O F T - P L U S S T R U C T U R E D B A S IC [A P L U S] S S S .O O
32K + , Disk II, ROM/RAM Applesoft, Apple I I/Apple II +
APIUS is a 4K machine language utility that adds the following structured programming commands to Applesoft basic: 1) WHEN..ELSE..FIN, 2) UNTIL, 3)
WHILE, 4) UNLESS, 5) CASE, 6) SELECT (variable), and 7) (OTHERWISE). Multi-line IF..THEN statements are also supported. APLUS allows the use of
‘‘named" subroutines or "procedures". The programmer can now instruct a program to "00 CURVE-FIT" without worrying about the location of the
subroutine. APLUS automatically indents "&LIST”ed programs to clarify the logic flow. The APLUS "&C0NVERT" command replaces the above structured
programming commands with "G0T0"'s and "G0SUB"'s to provide a standard Applesoft program as output. New programs can now be written using
"G0T0"-less logic.

A P P L E S O F T P R O G R A M O P T IM IZ E R [A O P T] $ 5 0 . 0 0
32+ , Disk II, ROM/RAM APPLESOFT, Apple ll/Apple II +
AOPT is a 2.2K machine language utility that will substantially reduce the size of an Applesoft program without affecting the operation of the program. AOPT
automatically: 1) Shortens variable names, 2) Removes remarks, 3) Removes unreferenced lines, 4) Appends short lines together, 5) Removes extra colons,
and 6) Renumbers line numbers. AOPT will convert a verbose, well documented, development version of a program into a memory-efficient, more secure, pro­
duction version of the same program. This is the ORIGINAL and the BEST optimizer on the software market today!

D O S P L U S S S S .O O
32 +, Disk II, DOS 3.3, Apple ll/Apple II +
DOS PLUS is the software solution for living with both 13-sector (DOS 3.1, 3.2, and 3.2.1) and 16 sector (DOS 3.3) Apple diskettes, DOS PLUS adds 8 new
commands to Apple DOS. Three of these are buitt-in and five are user definable. The built in commands include: 1) ".F" to "flip" between DOS 3.2 and 3.3
(The user need not re-boot and any program that resides in memory will not be affected by the flip. The DOS version can even be changed within a program!), 2)
".S" status command informs you what DOS version is currently active, and 3) ".B" BLOAD- analysis is also provided to inform the user of the starting ad­
dress and length of the last accessed binary file. DOS PLUS also includes a DOS COMMAND CHANGER program to allow easy customization of Apple DOS com­
mands to suit individual tastes.

D IS K O R G A N IZ E R II — N E W — $ 3 0 . 0 0
48K, Disk II, Apple ll/Apple II +
DO II is the fastest and friendliest utility available today for organizing files on an Apple II diskette. DO (I provides the following functions: 1) TITLING in Nor­
mal, Inverse, Flashing, Lower case, and other characters normally not available, 2) CUSTOM REORDERING of the directory, 3) ALPHABETIZING, 4) DYNAMIC
DISPLAY of ALL filenames on a diskette (including deleted files), 5) RENAMING files with the same character options as TITLING, 6) UNDELETING, 7)
DELETING, 8) PURGING deleted files, 9) LOCKING (all or some), 10) UNLOCKING (all or some), 11) USE of DOS sectors for increased data storage, and 12) a
SIMULATED CATALOG to show the modified directory before it is written to the diskette. DO II is completely MENU DRIVEN and attains it's speed by altering a
RAM version of the catalog. DO II uses a very powerful SMART KEY to automatically locate the next valid filename for any specified disk operation. Compatible
with DOS 3.1, 3.2, 3.2.1, and 3.3 as well as MUSE DOS to allow manipulation of SUPER TEXT files! (Note: Updates available for $5.00 and original diskette.)

P A S C A L L O W E R C A S E — N E W — S S S .O O
48k + , Disk II, Apple II/Apple II +, Language System
This is the most recent commercially available LOWER CASE MOD for Pascal for the Apple II. It is the only currently available modification that is compatible
with both versions of Pascal (1.0 and 1.1). The Pascal version is automatically checked prior to updating system Apple. If you have any of the hardware lower
case adapters you can now input the following characters directly from the keyboard: | * x } _ and \ . This modification does NOT interfere
with any of the ‘Control' character functions implemented by the Pascal environment and will 'undo' any alterations made by other commercially released
modifications.

Q U IC K L O A D E R $ 2 3 . 0 0
48K + , Disk II, Apple II/Apple II + . . . (2 Disks)
If you find yourself doing the same things over and over - QL will help you do it faster! QL is a unique disk that lets you load DOS, a language card (optionally),
and an application program of your choice extremely rapidly. QL boots as a 13 or 16 sector diskette and is easy to set up and use. To change the setup, you
merely load your Apple RAM with the new data and use the ‘‘RECONFIGURE” option of QL. The next time you boot your QL disk, it will quickly load your new
setup (Language Card, DOS, Application program) into your Apple! QL can reduce the time to perform these functions by up to 80%! Now that you've read
this, you say "But I can already do all of that!" QL doesn't do anything new - it just does it MORE CONVENIENTLY and FASTER! Try it, you'll like it!

D IS K R E C O V E R Y [“ T H E S C A N N E R ”] $ 3 0 . 0 0
48K + , Disk II, Apple ll/Apple II +
This program is long overdue. You need no longer be concerned with the problem of physically damaged disks. Just as "Apple Pascal" provides a “BAD
BLOCK SCAN” , DISK RECOVERY will do a complete scan of your Apple diskettes' recording surface. Damaged areas will be "marked" as used in the disk
directory so that no attempts will be made to "WRITE” to a bad sector. The VTOC will be completely redone to reflect both the bad sectors and actual disk
usage. A complete report is generated advising the user of all corrections. A resulting “DISK MAP" is presented for your review. The greatest advantage of
this program over the other versions is that it can be used on either NEWLY INITIALIZED DISKS or disks that ALREADY CONTAIN PROGRAMS as well as the
SPEED of analysis. THE SCANNER is fully compatible with both 13 and 16 sector diskettes. This is a must for all Disk II owners!

ALSO AVAILABLE: S E N S IB L E S O F T W A R E , IN C .
S U P E R D ISK C O P Y III.....................................9 3 0 . 0 0 6619 PERHAM DRIVE / W. BLOOMFIELD, MICHIGAN 48033
M U L T I-D ISK C A T A L O G H I.............................. S 8 S .O O 313-399-8877
T H E N E W P R O T E C T O R S B SO .O O
(Can or Write tor Information) VISA and MASTERCARD WELCOME
L U N A R L A N D E R II... S1B .O O Michigan Residents add 4% Sales Tax

 -...... _ phase add $1.00 postage & handling tor each item ordered.
M A S T E R M A Z E S1B .O O

MICRO - The 6502/6809 Journal No. 39 - August 1981

Expanding
the Superboard

Build your own expansion board
for the OSI Superboard including
VIAs, PIAs, a sound chip, and a
number of other possibilities.

Jack McDonald
Mews Cottage, Pond Lane
Clanfield, Portsmouth
P08 ORG, England

Many articles and programs have ap­
peared in computer magazines on AIM,
SYM, and KIM systems with their VIAs
and PIAs, leaving Superboard out in the
cold! To correct this unbalanced situa­
tion I built an expansion unit for Super­
board, consisting of PIAs and VIAs, with
room for the addition of a 'Sound Chip'
and further expansion if required.

In an attempt to standardize, I chose
the decoded addresses closest to the
SYM, because the Superboard doesn't
seem to use EOOO-EFFF. In table 1 you
can see that for VIA 1, the SYM’s Axxx
is equivalent to our Exxx. For example,
AOOB on the SYM is EOOB. This makes
it fairly easy to transfer, as the PIA/VIA
registers are accessed by the two least
significant hex digits (00-FF). On the
prototype only a few of the chips were
installed — most AIM/SYM applica­
tions use two VIAs at most. However,
this circuit provides for decoding two
PIAs, three 6522 VIAs, a 6532 VIA, a
sound chip, and a spare. The 6520's
could be used to select other devices.
How about an alternative character
ROM, or even characters in RAM? I'll
leave that to you.

Connection to S/B is via a 40 pin to
40 pin jumper lead. A separate 5V feed to
the VIA board is preferred but pin 11 of
fl could be used. Make sure that the
Data Bus buffers are fitted to your S/B
(U6,U7).

No. 39 - August 1981 M IC R O -T he 6502/6809 Journal 97

Figure 1

l i o n s ib o a n # SKE
IRQ IRQ
UMT MMX

R/n *

B O 2-

32 fW w

nffio vp o '

5IC.I 6ND Pins 8.3,10, 28 ,2^50,57 , 6N.D 6ND
3 ? , 3 9 , HO

Figure 2: Simple 0/A ■ A/D Voltmeter

INPUT
+I6V ,

SIMPLE d / a - A / D
VoLtMETER

fl 100 (7S<)
2R 200KOSDK)

I C 1)2 TH- OSI
TC 3 C D I+ 0 5 O

J T

pA5(MSf$

Table 1
6502

SYM/AIM S/Bd
AbOO EbOO ORB (PB0-PB7)
AbOl EbOl ORA 1PA0-PA7)
Ab02 Eb02 DDR B
Ab03 Eb03 DDR A
Ab04 Eb04 T1L-L/T1C-L
Ab05 Eb05 T1C-H
Ab06 Eb06 T1L-L
AbO 7 Eb07 T1L-H
Ab08 Eb08 T2L-1/T2C-L
Ab09 Eb09 T2C-H
AbOA EbOA SR
AbOB EbOB ACR
AbOC EbOC PCR(CA1,CA2,

CB1,GB2)
AbOD EbOD IFR
AbOE EbOE AER
AbOF EbOF ORA
b is 0 for VIA 1
b is 8 for VIA 2
b is C for VIA 3 (SYM only)

6532
SYM/AIM S/Bd
A400 E400 ORA
A401 E401 DDRA
A402 E402 ORB
A403 E403 DDRB
A404 E404 W-edge detect,

R-timer
A405 E405 W-edge detect,

R-int flags
A406 E406 W-edge detect,

R-timer
A407 E407 W-edge detect,

R-int flags
A41C E41C TIMER-IT
A41D E41D TIMER-8T
A41E E41E TTMER-64T
A41F E41F TIMER-1024T

Two 74LS244’s were used to buffer
the 16 address lines, 4/6ths of a 74LS04
buffer the phase two and R/W. Alter­
natively three 74LS367’s could be used.
The 74LS32 plus 1/6 74LS04 and 1/2
74LS00 are needed to provide the
necessary 'DD' signal to S/B and allow
expansion via SKE to a 610 board or
whatever. The new 'DD' input was re­
quired since open collector OR gates
don't exist. Initially three O/C inverters
were used.

The 74LS138(A) enables 74LS138(D)
for addresses E000-EFFF and (D) decodes
in 256-byte segments.

If power-on reset is used, all resets
should be connected in parallel. Indi­
vidual resets with switches can be used
with an associated extra wiring
' 'Jungle'' or use the outputs of a PIA as a
software reset.

Listing 1

* GENERAL SUCCESSIVE APPROXIMATION
* TO DRIVE DVM
*

* B Y JACK MCDONALD

PIA = $EXXX

XX, YY, AND A A ARE DETERMINED B Y USER

INIT LDA #$3F
STA PIA
IDA #$04
STA PIA+1

•0
START LDA #$00

STA Y Y
I D A #$40
STA XX
LDX #$07

LOOP DEX
BEQ FIN
LDA X X
SIR PIA

DE-GLITCH TIME DEIAY

DEGL LDA #$00

;SET 6 OUTPUTS & 2 INPUTS

;ACCESS IORA

;CLEAR LOCATION Y Y

;SET MSB IN LOC X X (BIT 5 FOR OUR D/A)
,-LQAD COUNTER (6 + 1, SINCE W E DEX FIRST)

;DCNE?

;SET MSB O N D/A

STA A A
DLOOP DEC A A ;1ST DEC A A CONTAINS $FF

BNE DLOOP ;DELAY F OR $FF X 2 MICROSEC

1
LDA PIA ;READ PIA INPUT

AND #$80 ;ONLY BIT 6 (A/D OUTPUT)

BNE SAVE
BBQ NEXT

SAVE ADC Y Y ; STORE RESUUT AFTER ADDITION

STA Y Y ;YY HAS TOTAL SO FAR

NEXT ROR XX ;NEXT 'MSB'

JMP LOOP

FIN U3A Y Y 7 TAKE FINAL TOTAL
JSR CRT ; PRINT IT C N CRT

JMP START ; START AGAIN

Figure 3: A/D Interfaces

Y S v + 5 V

Position Con+rd
(Jo^s4ick)

TO VIKIPUT'

TO INPUT

-Y- IN414-?

OV OV

98 MICRO - The 6502/6809 Journal No. 39 - August 1981

The expansion board was con­
structed on 'VERO' DIP Board and the
40 pin sockets were straddled across the
two supply rails (see figure 1). In the
USA 'VECTOR' is a near equivalent. To
make output connections, 16-pin Dil
sockets (use only the 8 pins connected
to the PA/PB outputs) 'VECTOR' type
VCT-4493-1 may be suitable. Wire-
wrap/wire pen or Rats Nest can be used
with wire-wrap allowing tidier
modifications.

Figure 2 shows a simple A/D-D/A
converter, which performs the function
of a 6-bit digital voltmeter. "De­
glitching'' has not been included — a
software delay is used instead.

Figure 3 gives two very primitive in­
put interfaces for the DVM. Listing 1 is
a successive approximation program to
drive the DVM. Improvements to the
circuits and program are possible at the
expense of simplicity, but the circuit is
adequate for simple control applications
and learning about D/A's in general.

The resistor values should be kept
between 150K and 330K for the 2R, to
minimize the effect of the 4050 "on”
resistance (about IK). R is two paralleled
2R's.

Figure 4(a) is a simple method of im­
plementing joystick controls. The
variable resistor in the timing circuit of
the 555/556 alters the duration of the
output pulse. This pulse is detected by
the PA7 pin of a 6532 VIA in its inter­
rupt mode. The 555 is triggered by the
low transition of PBO on the same
device. The software on interrupt reads
the timer; then, by using a 'dead zone'
and a no-action (or stop), can be defined
[i.e., 0-130(up), 131-140(stop), 141-255
(down)]. Thus the stop position is not
too critical to locate manually.

Figure 4(b) shows an ultra-simple
switch position detector. By reading the
four bits, one of four possibilities is
detected, i.e. LDA PIA, and #$0F —
value left in A is the switch number.

Figure 5 indicates the additional
decoding for 100 hex 'boundaries' —
256-byte PROMS, etc.

Figure 6 is a commonly used
"EPROM programmer'' of the on-board
variety. The address is first latched into
PA0-PA7 and the data byte to be pro­
grammed is latched into PB0-PB7. Final­
ly the programming pulse is applied via
CA2 for the recommended time. As the
8 bits (PA) will only address 256 bytes, a
74LS75 is used as an address extender. If
PA0-PA4 are initially zero then clocking

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 99

BA7

A

OS
A*

Figure 4; A/D Interfaces

j t V c c

Po+ I (or single jo^s+ick:)

i — T ov FW-s Can be sini-tdied nesis-lors.

+Vcc

2 (of duo) potjeystocJc)

B .
Simple
4 Fbsn
G o rrtrd

P. A.
■+SV

51 noi M o ' b '
3

I f 'A' PoKi Used

Return | <Q jo py

Figure 5

I.e.
cs (opp loo Iff i)

'o d d ' io o HEX
DECODE

Figure 6: EPROM/PROM Programmer

the '75 via CB2 clears the high-address
bits (A8-A11J. After 256 bytes, latch a
one on PAO, clock CB2, and A8 on the
2708 is 'on.' Then do the next 256.
Listing 2 gives the necessary steps.

Figure 7 indicates how to hang on a
"sound chip.” See manufacturer's data
sheets for programming information.

The final circuit of figure 8 is for a
Paper Tape reader. The unit used was an
old (free) “Computer Mechanisms
Corp” ratchet relay type, with long con­
tact fingers sensing holes in the tape.
These contacts are connected to PA0-
PA7 of a PIA. The relay is driven by a
small CMOS FET via the CA2 output.
The listing given reads 256 bytes but can
be altered to increase this. The reader
can also read 5-bit tapes. It is only
necessary to mask off the high 3 bits in
the main program — LDA, PIA, and
#$1F — this should appease the
TTY'ers. In 8-bit form it is ideal for
disassembling tapes produced from
ROM/PROM, etc., since keyboard and
LED displays are painfully slow!

For more information refer to
MICRO (7:17), (11:31), (13:41), (17:27),
(17:55), and Sybex's 6502 Applications.

OHIO SCIENTIFIC
S-FORTH — a full implemen­
tation of Fig-FORTH including
editor, virtual disk sub-sys-
tem, and compatibility with
OS65D-3 on 5V*” or 8" disk.
$34.95.

Source listing $24.95.
Both for $49.95.

TOUCH TYPING MADE EASY
— 15 lesson set teaches you
to “ touch type” . Now also
available for the C1P. 8K.
$19.95.
TITANIC QUEST — a real time
search where you risk your re­
maining supplies to find the
Titanic. 8K. $6.95.
TEXT EDITOR - the best
screen text editor available for
OSI C4P, C8P disk systems.
$19.95.
Send for our FREE
software and hardware cata­
log. Includes photos and com­
plete descriptions of all game,
utility, and business software.

Aurora Software Associates
P.O. Box 99553 she

S 3 Cleveland, Ohio 44199 BUS!
(216)221-6981

Listing 2

EPRCfMER
. *
; * BY MCDONALD

LOCN EPZ $00
BUFF EQU $500

0300 A900

PIA ECU $EC00

ORG $300

START LDA #$00
0302 8D01EC STA PIA+1 ;DDRA
0305 A9FF LDA #$FF
0307 8D00EC STA PIA ;ALL A OUPUTS
030A A904 IDA #$04
030C 8D00EC STA PIA
030F A900 IDA #$00
0311 8D02EC STA PIA+2 ;DDRB
0314 A9FF LDA #$FF
0316 8D03EC STA PIA+3 ;ALL B OUTPUTS
0319 A904 IDA #$04
031B 8D02EC OTA PIA+2
031E A900 LDA #$00
0320 8D00EC OTA PIA ; PA1S TO ZERO
0323 8D02EC OTA PIA+2 ;P B 'S TO ZERO
0326
0326 7 25 MICROSEC DELAY SUBROUTINE
0326
0326 A9FC LODLY LDA #$FC
0328 8500 STA LOCN
032A C600 LOOP DEC LOCN
032C DOFC BNE LOOP
032E 60 RTS
032F
032F ;1 MILLISEC DEIAY SUBROUTINE
032F
032F A904 HIDLY LDA #$04
0331 8501 SIR LOCN+1
0333 202603 JS R LODLY
0336 C601 DEC LOCN+1
0338 F003 BBC FINI
033A 202603 JS R LODLY
033D 60 FINI RTS
033E
033E A900 IDA #$00
0340 8502 STA LOCN+2
0342 A964 IDA #$64
0344 8503 OTA LOCN+3
0346 AOOO PROG LDY #$00
0348 B90005 MOV U A BUFF.Y
034B 8D02EC STA PIA+2 rDATA
034E 202603 JS R LODLY
0351 A93C IDA #$3C
0353 8D01EC STA PIA+1 ;CA2 CN
0356 202F03 JS R HIDLY ;P0R 1 MIUJSEC
0359 A934 U A #$34
035B 8D01BC OTA PIA+1 ;CA2 OFF
035E 202603 JS R LODLY
0361 C8 INY ;INC RAM/ROM ADDRESS
0362 98 TYA
0363 8DOOEC STA PIA ;L0W ADDRESS BITS
0366 AS TAY ;TAY TO TEST Z FLAG
0367 DODF BNE MOV ;2 5 6 NOT DCNE?
0369 ;
0369 E602 ADINC INC LOCN+2
036B C904 CMP #$04
036D P014 BEQ HUND
036F A502 LDA LOCN+2
0371 8D00EC STR PIA
0374 A93C IDA #$3C
0376 8D03EC STA PIA+3
0379 A934 IDA #$34 ;INC ADDRESS EXTENSION
037B 8D03EC STA PIA+3
037E A900 U A #$00
0380 8D00EC STA PIA ;RESETT LOW ADDRESS BITS
0383 C603 HIM) EEC LOCN+3
0385 DOBF BNE PROG ;1 0 0 TIMES YET?
0387 ; JMP EXIT TO MONITOR?

(

C

(

100 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

Figure 7: Sound Generator Interface

+ 5 V

Address
BDIR BC1 Hex Dec Function

0 0 EA00 59904 |READ) INACTIVE
0 1 EA01 59905 READ FROM DSE
1 0 EA00 59904 WRITE DATA TO PSG
1 1 EA01 59905 (WRITE) LATCH ADDRESS

Example: POKE 59905,7 POKE 59904,130 places (DEC) 130 in register 7.

Figure 8: Electro-Mechanical Paper Tape Reader
+ 2 H V

Charge MICRO
and MICRO Books!

MICRO now accepts
VISA and Mastercard.
Credit card holders
around the world can
now order subscriptions
and books by phone or
mail.

Call (617) 256-5515
between 9:00 A.M. and
5:00 P.M. and say
“Charge it!”

Or mall your order with
your credit card name,
number, and expiration
date to

Order Department
MICRO
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA
01824

International Orders

If you are outside the U.S.,
you may pay by

1. VISA or Mastercard
■ ■ -or.. "

2. International
Money Order

We no longer accept bank
drafts from foreign banks —
even if the funds are drawn
on an account in a U.S.
bank! The rising bank
charges now make payment
by this method prohibitive.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 101

Make Your
Reference Library
Complete With
T h e B e s t o f M I C R O

Volume 1—Contains 46 articles
from October/November 1977
through August/September 1978:
Apple articles (16), AIM 65 (1),
KIM-1 (10), PET (9), OSI (1),
SYM-t (1), and General (8). 176
pages plus 5 tear-out reference
cards (Apple, KIM, PET, and
6502), 8Vi X 11 inches, paper-
bound. $6.00

Volume 2—Contains 55 articles
from October/November 1978
through May 1979: Apple articles -
(18), AIM 65 (3), KIM-1 (6), PET
(12), OSI (3), SYM-t (4), and
General (9). 224 pages, 8Vz X
11 inches, paperbound r $8.00

Volume 3—Contains 88 articles
from June 1979 through May
1980: Apple articles (24), AIM 65
(7), KIM-1 (9), PET (15), OSI (14),
SYM-1 (11), and General (8). 320
pages, 8 Vi x 11 inches, paper-
bound. ' $10.00

Ask for The Best of MICRO at
your computer store. Or, to order
with VISA or Mastercard

Call TOLL-FREE
8 00*2 2 7 -1 0 1 7

Extension 564
In California 800-772-3545

Extension 564

On orders received by August
31,1981, we pay all surface ship­
ping charges. r

MICRO
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA 01824

Massachusetts residents add 5%
sales tax.

Listing 4

;* PAPER TAPE READER
• *

?* B Y JACK MCDONALD

PIA BQU $EA00
BUFF EQU $03FF
t

ORG §300

0300 AOOO LDY #$00
0302 201803 READ JSR STEP
0305 ADOOEA IDA PIA
0308 C9FF CMP #$FF ;START BYTE?

030A D0F6 ENE READ ;NO
030C 99FF03 LOOP STA BUFF,Y ;YES...START READING

030F 201803 JSR STEP
0312 ADOOEA lift PIA
0315 C8 INY
0316 D0F4 ENE LOOP
0318 ;EXIT HERE, AS 256 BYTES HAVE BEEN READ
0318 A90E STEP lift #$0E
031A 8D0CEA STA PIA+$0C ;TORN CA2 ON

031D A920 lift #$20
031F 8DFD03 STA $03FD ; DELAY HIGH BYTE

0322 A9FF DELAY LDA #$FF
0324 8DFC03 STA $03FC ; DELAY LOW BYTE
0327 CEPC03 DEC $03FC
032A D0F6 BNE DELAY
032C CEFD03 DEC $03FD
032F D0F1 BNE DELAY
0331 A90C U A #$0C
0333 8D0CEA STA PIA+$0C ;TURN CA2 OFF
0336 60 RTS

Listing 3

* JOYSTICK ROUTINE
*

* B Y JACK MCDONALD
*

6532 ADDRESSED A T $E400

ORG $E480

E480 A980 U A #$80
E482 8D03E4 STA $E403 ;PB7 IS OUTPUT
E485 8D02E4 STA $E402 ;PB7 SET HIGH
E488 AD05E4 LDA $E405 ;CLR INT FLAG
E48B 8D06E4 STA $E406 ;ENABLE PAY IBS (DATA

"DON'T CARE")
E48E A90F Lift #$0F ;16 MICROSEC
E490 8D1EE4 STA $E41E ;TIMES 64
E493 A900 LDA #$00
E495 8D02E4 STA $E402 ;RESET 555 TIMER
E498 AD05E4 WAIT LDA $E405
E49B 2940 AND #$40 ;IRQ YET?

E49D F0F9 BEQ WAIT ;NO
E49F AD04E4 LDA $E404 ;YES, READ TIME VALUE
E4A2 40 RTI ;RETURN TO MAIN PROG.

WITH TIME VALUE IN ACC

102 MICRO - The 6502/6809 Journal No. 3 9 -August 1981

S O F T W A R E F O R O M I O S C I E N T I F I C

V ID E O EDITO R
Video Editor is a powerful full screen editor for disk-based
OSI systems with the polled keyboard (except C1P>. Allows
full cursoi—control with insertion, deletion and duplication
of source for BASIC or OSI's Assembler/Editor. Unlike
versions written in BASIC, this machine-code editor is
co-resident with BASIC (or the Assembler), autoloading into
the highest three pages of RAH upon boot. Video Editor also
provides single-keystroke control of sound, screen format,
color and background color. Eight-inch or mini disk:
*14.93. Specify amount of RAM.

SOFT FRONT PANEL
Soft Front Panel is a software single-stepper, slow-stepper
and debugger-emulator that permits easy development of 6502
machine code. SFP is a fantastic monitor, simultaneously
displaying all registers, flags, the stack and more.
Address traps, opcode traps, traps on memory content and on
port and stack activity are all supported. This is for disk
systems with polled keyboard and color <b&w monitor ok).
Uses sound and color capabilities of OSI C2/C4/C8 systems
(not for C1P). Eight-inch or mini disk *24.95. Specify
amount of RAM. Manual only, *4.95 (May be later credited
toward software purchase). Six page brochure available free
upon request.

TERMINAL CONTROL PROGRAM
OSI-TCP is a sophisticated Terminal Control Program for
editing 0S-63D3 files, and for uploading and downloading
these files to other computers through the CPU board's
serial port on OSI C2, C4 and C8 disk-based systems with
polled keyboards. Thirteen editor commands allow full
editing of files, including commands for sending any text
out the terminal port and saving whatever text comes back.
INDUTL utility included for converting between BASIC source
and TCP file text. Eight-inch or mini disk *39.93. Manual
only, *2.95.

OSI—FORTH 2.0 / FIG-FORTH 1.1
OSI-FORTH 2.0 is a full implementation of the FORTH Interest
Group FORTH, for disk-abased OSI systems (Cl, C2,C3, C4, C8) •
Running under 0S65D3, it incl-udes a resident text editor and
6502 assembler. Over one hundred pages of documentation and
a handy reference card are provided. Requires 24K (20K C1P).
Eight-inch or mini disk *79.95. Manual only, *9.95'.
"OSI-FORTH Letters" software support newsletter *4.00/year.

All prices postpaid. Florida residents add 4% tax. Dealer
inquiries are invited. Allow 30 days for delivery.

WRITE FOR FREE CATALOG ^ Technical Products Company
OF SOFTWARE AND HARDWARE A P.O. Box 12983 Univ. Station
FOR OHIO SCIENTIFIC !• T Gainesville, Florida 32604

Flat Rate

D ISK DRIVE OVERHAUL

One Week Turnaround Typical

Complete Service on Floppy Disk Drives.

FLAT RATES
8" Double Sided Drive $170.00*

8" Single Sided Drive Si 50.00*

5'A” M.P.I. Drive $100.00*

*Broken, Bent, or Damaged Parts Extra.
You’ll Be Notified of

1. The date we received your drive.
2. Any delays and approximate time of completion.
3. Date Drive was shipped from our plant
4. Repairs performed on your Drive.
5. Parts used (# and description).
6. Any helpful hints for more reliable performance.

90 Day Warranty.
Ship Your Drive Today.

Write or call for further details.

PHONE.(417) 485-2501
FESSENDEN COMPUTER SERVICE

116 N. 3RD STREET OZARK, MO 65721

BETA 32K BYTE EXPANDABLE RAM FOR
6502 AND 6800 SYSTEMS

AIM 65 KIM SYM PET S44-BUS
• Plug compatible with the AIM-65/SYM expan­

sion connector by using a right angle connec­
tor (supplied).

• Memory board edge connector plugs into the
6800 S44 bus.

• Connects to PET using an adaptor cable.
• Uses + 5V only, supplied from the host com­

puter.
• Full documentation. Assembled and tested

boards are guaranteed for one full year.
Purchase price is fully refundable if board is
returned undamaged within 14 days.

Assembled with 32K RAM........................... $349.00
& Tested with 16K RAM......................... 329.00
Bare board, manual & hard-to-get parts... 99.00
PET interface kit. Connects the 32K RAM board
to a4K o r8K PET.. $ 69.00

See our full page ad in BYTE and INTERFACE
AGE.

wabasN

8” or 5 Vi” flexible diskettes certified 100%
error free with manufacturers 5 year limited
warranty on all 8” media. Soft sectored in tilt-
back* boxes of 10. 5 Vi” available in 10 Sector.
(Add $3.00 for plastic library cases)
8” single sided, single density.......................$29.95
8” single sided, double density..................... 37.95
8” double sided, double density......... 48.95
5Vi” single sided, single density.................. 27.95
5 Vi” single sided, double density............... 29.95

• Tilt-Back is a tradem ark o f W abash , In c.

8” DISK DRIVES
Shugart 801R..$390.00
NEC FD1160 (double sided)..................... 595.00
Memorex MRX-101 8” Winchester style, hard
disk drive, 10 megabytes.......................... $2,000.00

16K MEMORY -,9q nn
EXPANSION KIT

For Apple, TRS-80 keyboard, Eridy, and all
other systems using 4116 dynamic rams or
equivalent. All IC’s are prime Mitsubishi MK
4116-3.
* 200 NSEC access, 375 NSEC cycle
• Burned-in and fully tested
• ^ lful^yearjjartsreglacem en^guarante^^

ROCKWELL AIM 65

AIM 65 with IK ram......................................$425.00
AIM 65 with 4K ram..................................... 485.00
AIM power supply... 125.00
Professional AIM enclosure........................ 169.00
Budget AIM. enclosure.................................. 50.00
KIM enclosure.. 40.00
SYM enclosure... 30.00

TERMS: Minimum order $15.00. Minimum
shipping and handling $3.00. Calif, residents
add 6% sales tax. Cash, checks, Mastercard,
Visa and purchase orders from qualified firms
and institutions are accepted. Product availabili­
ty and pricing are subject to change without
notice.
INTERNATIONAL ORDERS: Add 15 % to pur­
chase price for all orders. Minimum shipping
charge is $20.00. Orders with insufficient funds
will be delayed. Excess funds will be returned
with your order. All prices are U.S. only.

COmPUTER DEVICES

1230 W C O U in j AVE.
O R f l n C E , c n 9 9 6 6 8

(7 1 4) 6 3 3 - 7 2 8 0

VISA'

No. 3 9 -August 1981 MICRO - The 6502/6809 Journal 103

/AICRO
Software Catalog

Mike Rowe
34 Chelmsford Street
P.O. Box 6502
Chelmsford, MA 01824

Name: SEGS
System: OSI
Language: OS65D
Hardware: Disk
Description: Adds segmentation com­
mands to BASIC. Allows segment calls
(like GOSUB's] to subroutines stored
on disk. By nesting calls, laige pro­
grams may be written and will run in
memory. Write for more information.
Price: $25.00
Available: Universal Systems

2020 W. County Rd. B
Minneapolis, MN 55113

Name: Fast Facts
System: Apple II & Apple II Plus
Memory: 48K
Language: Applesoft
Hardware: Disk 3.2 or 3.3, line

printer desirable
Description: This selection of programs
was created and designed by a Certified
Financial Planner for quick analysis of
the personal investment planning
needs of his clients. It was profession­
ally programmed for efficient and
accurate operation. Fast Facts operates
very easily with single key program
selection and printing commands. In
many cases the entire planning se­
quence is completed in less than 60
seconds. Specific program objects are
divided into six systematic program
fields. They are: 1) planning for retire­
ment, 2] college financing for the kids,
3] diversifying your investments, 4) the
result of inflation in devaluing your
earnings, 5) costs of borrowing money
and loan balance at any point in time,
6) investment calculations for com­
pounding and future values. These pro­
grams were planned with care to allow
you to change input data and in many
cases identify erroneous entry values.
Their primary value rests with their
speed and ease of operation with no
need to learn special control characters.
Copies: Version 1.1 just released
Price: $95.00 includes disk and

instructions
Author: Monte C. Fremouw
Available: Richard Lorance CFP

c/o Richard Lorance and
Associates, Ltd.

3336 N. 32nd Street,
Suite 102
Phoenix, AZ 85018

Name: SYM-FORTH 1.0
System: SYM-1
Memory: 16K
Language: 8K machine language and

FORTH
Hardware: Serial terminal and RAE

ROMS
Description: SYM-FORTH 1.0 is a
faithful implementation of the fig-
FORTH model with the following addi­
tional features: unique input line
ed ito r; b u ilt- in 6502 FORTH
assembler; dual cassette interface; FIG-
style screen editor; upgrade to
79-STANDARD available through
subscription to newsletter.
Copies: 50
Price: $135 US/$155 Canada -

cassette version includes
74-page user guide,
100-page source listing,
and object on cassette.
$150 US/$175 Canada -
disk version for dual
HDE mini disk system,
as above but supplied on
two mini floppies.
System boots with
79-Standard installed.

Author: John W. Brown
Available: Saturn Software Limited

8246 116A St.
Delta, BC., V4C 5Y9,
Canada

Name: Pegasus
System: UCSD Pascal operating

systems
Memory: 48K and the Pascal

Language Card
Language: UCSD Pascal
Hardware: Apple n, Language Card,

CRT.
Description: This is a Data Base
Management System. You can create,
define, manipulate, print, list, write to
disk, view and generally use data files.
It is extremely user-oriented, especially
for the novice user. It is menu driven.
Price: $195.00 MSRP includes

program diskette,
technical manual, and
'cookbook.'

Author: Shakti Systems Inc.
Available: Powersoft, Inc.

POB 157
Pitman, NJ 08071

Name: 6502 C Cross-compiler
System: UNIX/V7, UNIX/V6 or

Idris, RT-11, RSTS/E,
RSX-11, VAX/VMS

Memory: 28K
Language: C
Hardware: PDP-11 series, LSI-11

series, VAX series
Description: This product is a C cross-
compiler running on any of the above-
mentioned hardware/software systems.
It generates sym bolic assembly
language for the 6502 microprocessor.
The full C language, as described by
Kemighan and Ritchie's The C Pro­
gramming Language, is supported
except for three minor features. This
product complements the existing line
of C compilers and cross-compilers
from Whitesmiths, Ltd, of New York.
Price: $1600 plus media charge

($30 for floppies, $50 for
magtape) includes
documentation and
binary license for use on
a single host CPU

Author: Staff
Available: Advanced Digital

Products, Inc.
1701 Twenty-first Ave., S.
Nashville, TN 37212

Name: Home Energy Survey
System: OSI-4P and PET-2000
Memory: 24K (OSI),

8K/16K/32K (PET)
Language: BASIC
Hardware: Minifloppy (OSI)

Cassette (PET)
Description: This program calculates
the savings a home owner will achieve
by adding storm windows, changing
thermostat settings, caulking, weather-
stripping, adding ceiling insulation,
and adding floor insulation. The pro­
gram is valid for the 48 contiguous
states and for the following heating and
cooling fuels: oil, natural gas, electri­
city, wood, propane (LPG), and coal.
The user inputs city, state, fuel cost,
window area, floor area, thermostat
settings, ceiling and floor R values.
Price: $15.95
Author: David E. Pitts
Available: David E. Pitts

16011 Stonehaven Dr.
Houston, TX 77059

104 MICRO - The 6502/6809 Journal No. 39 - August 1981

Name: C.O.R.P. (Combined
Operations Re-entrant
Programming Data-Base
Management System)

System: Apple II
Memory: 48K
Language: Applesoft BASIC
Hardware: 2 disk drives (DOS 3.3),

Applesoft in ROM, video
monitor, optional printer

Description: C.O.R.P. is a program
generator that writes complete data-
entry and print programs in Applesoft
BASIC. These programs are written on
a standard DOS 3.3 disk and may be
modified by the user. The system in­
cludes a sort, update and copy facility
along with the ability to modify impor­
tant system functions. The generated
programs utilize keyed random access
for fast record retrieval. A complete
diagnostic package is also included.
Price: $189.95 includes master

and diagnositc
disks/manual

Author: Alexander Maromaty
Available: Maromaty & Scotto

Software Corp.
P.O. Box 610
Floral Park, NY 11001

Name: GRAFPAK, TIGR
System: Apple II
Memory: 32K minimum
Language: BASIC and machine
Hardware: Disk II and Integral Data

IDS 560 or 460
Description: Provides 1 or 2 x horizon­
tal and 1 to 3 x vertical reproduction of
either Hi-Res page, and 1 to 3 x vertical
reproduction of both pages side by side.
3 x horizontal and 4 or 5 x vertical
reproduction on IDS 560, only. Nor­
mal/inverse inking and indentation in
inches are user-specified. Compatible
with most I/O cards. Extremely simple
to use. Versions available for other
printers!
Price: $39.95 for 460 version

(plus 5.5% tax in Ohio)
$49.95 for 560 version

Author: Robert Rennard
Available: SmartWare

2281 Cobble Stone Court
Dayton, Ohio 45431

Name:
System:
Memory:
Language:
Hardware:

h

Job Control System
Apple II
48K
Pascal
Three disk drives and a
132-column printer
capable of performing a
form feed,

escription: Computer-assisted job
control for small-to-medium-size com­
panies in manufacturing, construction
and service industries. This system

provides management with reliable
measures of productivity furnishing up-
to-the-minute job status data for deter­
mining the real cost of producing a pro­
duct or providing a service. Several
valuable reports including job listing,
job cost summaries, detailed individual
job reports, and work-in-process reports
give profit/loss values and variances so
that job estimates and work standards
can be fine-tuned.
Price: $750.00
Author: Shop Controls Inc.
Available: High Technology

Software Products Inc.
P.O. Box 14665
8001 N. Classen Blvd.
Oklahoma City, OK
73113

Name: FBASIC Compiler
System: All Ohio Scientific 8"

Disk Systems (OS65D
Operating System)

Memory: 48K
Language: FBASIC
Hardware: OSI 8" disk systems
Description: Super-fast BASIC com­
piler. Compiles an integer-subset of
OSI/Microsoft BASIC into native 6502
machine code. Features user-definable
array locations, WHILE loops, GOTOs
and GOSUBs to absolute addresses,

direct access to 6502 registers, and
much more. FBASIC is fully diskbased,
and is capable of producing programs
larger than available memory.
Price: $155.00 ppd. includes 8”

disk with compiler,
many example programs,
and user manual.

Author: Richard Foulk
Available: Pegasus Software

P.O. Box 10014
Honolulu, HI 96816

Name: 0-3. Option Strategy
Charts

System: PET
Memory: 8K
Language: BASIC
Hardware: PET / CBM
Description: Charts are plotted for two
assumed situations of option strategies
of puts and calls and their combina­
tions. The plot of strategy values for a
series of underlying stock prices permit
comparison of the assumptions.
Price: $15.00
Author: Claud E. Cleeton
Available: Claud E. Cleeton

122-109th Ave., S.E.
Bellevue, WA 98004

CBM/PET? SEE SKYLES ... CBM/PET?
LU C/)

“ Look how fast I create these
great graphic displays on my
PET with the new PicChip...
it’s like home movies. ’ 9

PicChip, the new ROM that took Europe by storm, available
only from Skyles Electric Works in the U.S. and Canada.
PicChip, a ROM extension of the BASIC version III, BASIC 4.0 or BASIC 8032 interpreter
that offers over 40 commands that allow you to create programs with dynamic graphics
displays: plots, bar graphs, pictures; and rolling, scrolling, shifting and inverting. All in­
stantly and easily added to your BASIC program.

The address for the 2000/3000 (which would require PicChip module PC2), for the 4000
(PC4), and for the 8000(PC8) is $AOOO... unless you have a Mikro, WordPro III or IV,
or Jinsam, which occupy that same address. In those cases, you will need the PicChip on
an interface board that would reside in address B 800... for the 2000/3000 series (PCB2),
above the Toolkit. For the 4000 (PCA4) and 8000 (PCA8), the Mikro or WoodPro would
be switchable manually using the Skyles Socket-2-ME.

Skyles guarantees your satisfaction: if you are not absolutely happy with your new
PicChip return it to us within ten days for an immediate, full refund.

PicChip from Skyles Electric Works (Please indicate PC2, PC4, PC8).................... $60.00

Complete with interface board (Please indicate PCB2, PCA4, P C A 8).................... 80.00
Shipping and Handling fUSA/Canada) $2.50 (Europe/Asia) $10.00

California residents must add 6 % /6 /i % sales tax, as required.

Skyles Electric Works
231E South Whisman Road
Mountain View, California 94041
(415) 965-1735

Visa/Mastercard orders: call tollfree
(800) 227-9998 (except California).
California orders: please call (415)
965-1735.

i m o " S3 1 AXS 3 3 S 6 l 3 d/IAiaO '

No. 39 - August 1981 MICRO - The 6502/6809 Journal 105

APPLESCOPE
DIGITAL STORAGE OSCILLOSCOPE

Interface for the Apple II C om puter

The APPLESCOPE system combines two high speed analog
to digital converters and a digital control board with the high
resolution graphics capabilities of the Apple 11 computer to
create a digital storage oscilloscope. Signal trace parameters
are entered through the keyboard to operational software
provided in PROM on the Dl control board.

• DC to 3.5 Mhz sample rate with 1024 byte buffer memory
•Pretrigger Viewing up to 1020 Samples
•Programmable Scale Select
•Continuous and Single Sweep Modes
•Single or Dual Channel Trace
•Greater than or less than trigger threshold detection

Price for the two board Applescope system is $595

For futher information contact:

Dealer Inquiries Invited

RC ELECTRONICS INC.
7265 Tuolumne Street
Goleta, C A 93117
(805) 968-6614

PET & APPLE II USERS

T in y P ascal
PIUS +

GRAPHICS

The TINY Pascal System turns your APPLE II micro Into a 16-blt P-machine. You
too can learn the language that is slated to become the successor to BASIC. TINY
Pascal offers the following:

* LINE EDITOR to c reate, modify and m aintain s o u rc e
* COMPILER to produce P*code, th e assem bly langauaoe of th * P-machlne
* INTERPRETER to ex ecu te the com piled P-code (h a s TRACE)
* S tructured program m ed constructs: CASE-OF-EISE, WHILEDO, IF-THEN*

ELSE, REPEAT-UNTIL, FOR-TO/DOWNTO-DO, BEQIN-ENO, MEM, CONST,
VAR ARRAY

Our new TINY Pascal PLUS+ provides graphics and other builtin functions:
GRAPHICS, PLOT, POINT, TEXT, INKEY, ABS AND S Q R The PET version sup­
ports double density plotting on 40 column screen giving 80 x 50 plot positions.
The APPLE II version supports LORES and for ROM APPLESOFT owners the
HIRES graphics plus other features with; COLOR, HQRAPHICS, HCOLOR,
HPLOT, PDL and TONE. For those who do not require graphics capabilities, you
may still order our original Tiny Pascal package.

TSNY P ascal PLUS+ GRAPHICS VERSION-
PET 32K NEW Roms cassette..$58
PET32K NEW Roms diskette..$50
APPLE II 32K/48K w/DOS 3.2 or 3.3............................. $50

TINY Pascal NON-GRAPHICS VERSIONS-
PET 18K/32K NEW Roms cassette..$40
PET 16K/32K NEW Roms diskette..$35
APPLE II w/ROM Applesoft 32K w/DOS................................ $35
APPLE II w/RAM Applesoft 48K w/DOS......................... $35

USER'S Manual (refundable with software order)................$10
6502 Assembly Listing of INTERPRETER-graphlcs............ $25
6502^ssembly Listing of INTERPRETER-non graphics.. $20

FREE poataga In U.S. and CANADA. Ordan may b* prepaid of by bankcard (includa cam number and aiplrUlon data). Michigan raaManta Induda 4% ataia aaiaa tax. Ordara ac- captad via THE SOURCE - 0.0962.

i f f i m

ABACUS SOFTWARE
P.O. Box 7211
Grand Rapids, Michigan 49510
(616) 241-5510

I

IN T E R -S T A T '" o ffers y o u a full ran g e o f in tera c tiv e s ta tis tica l

an aly sis te c h n iq u e s , fro m av erag es a n d m ed ian s to b inom ial

an d p o isso n d is tr ib u tio n s , c o rre la tio n co effic ien ts and one- a n d

tw o -w ay an aly sis o f v arian ce . $1 6 9 .

A D V A N C E D M A T H R O U T IN E S is th e m a th e m a tic a l to o l kit

fo r c o m m o n , yet co m p lex n u m e ric a l p ro b le m s. R o u tin es include:

lin ear reg re ssio n , m a trix o p e ra tio n s , n u m erica l calculus,

d iffe re n tia l e q u a tio n s a n d d a ta set recall fo rite ra tiv e c a lc u la tio n s .

$1 6 9 .

T h o ro u g h ly tes te d , well d o c u m e n te d a n d easy to m aste r, each

p a c k a g e in c lu d es a 30+ page se lf-te a c h in g m a n u a l.

S e re n d ip ity ’s co m p lete line o f so ftw a re so lu tio n s for business,

e d u c a tio n a n d p ro fessio n al a p p lic a tio n s a re av a ila b le a t y o u r

local C o m p u te r la n d o r A p p le d ealer.

F o r a free b ro c h u re , o r to o rd e r d irec t c o n ta c t S e ren d ip ity

S y stem s, 2 2 5 E lm ira R o a d , I th a c a , NY 14850.

P h o n e 6 0 7 -2 7 7 -4 8 8 9 . V isa a n d M C a cce p te d .

’"A pple C o m p u te r

SERENDIPITY SYSTEMS

-------------------------------------(
J D e c is io n

S Decision System s
P.O . Box 13006

y s t e m s Denton. TX 76203

SOFTW ARE FOR THE APPLE II*

IS A M -D S is a n i n t e g r a t e d s e t o f A p p i e s o f t r o u t i n e s t h a t g iv e s in d e x e d f i le c a p a b i l i t ie s
t o y o u r BAS IC p r o g r a m s . R e t r i e v e b y k e y , p a r t i a l k e y o r s e q u e n t ia l l y . S p a c e f r o m
d e le te d r e c o r d s is a u t o m a t ic a l l y r e u s e d . C a p a b i l i t i e s a n d p e r f o r m a n c e t h a t m a t c h
p r o d u c t s c o s t i n g t w ic e a s m u c h .
$50 D is k , A p p l e s o f t .

P B A S IC -D S is a s o p h is t ic a t e d p r e p r o c e s s o r f o r s t r u c t u r e d BASIC. U s e a d v a n c e d
lo g i c c o n s t r u c t s s u c h a s IF ...ELSE..., CASE, SELECT, a n d m a n y m o r e . D e v e lo p
p r o g r a m s f o r I n t e g e r o r A p p l e s o f t . E n jo y t h e p o w e r o f s t r u c t u r e d lo g i c a t a f r a c t i o n o f
t h e c o s t o f PASCAL.
$35. D is k , A p p l e s o f t { 4 8 K , R O M o r L a n g u a g e C a r d) .

DS A — DS is a d is - a s s e m b le r f o r 6 5 0 2 c o d e . N o w y o u c a n e a s i ly d is - a s s e m b le a n y
m a c h i n e l a n g u a g e p r o g r a m f o r t h e A p p l e a n d u s e t h e d is - a s s e m b le d c o d e d i r e c t l y a s
i n p u t t o y o u r a s s e m b le r . D i s - a s s e m b fe s in s t r u c t i o n s a n d d a t a . P r o d u c e s c o d e c o m ­
p a t ib le w i t h t h e S - C A s s e m b le r (v e r s io n 4 . 0) , A p p l e 's T o o l k i t a s s e m b le r a n d o t h e r s .
$25 D is k , A p p l e s o f t (3 2 K , R O M o r L a n g u a g e C a r d) .

FO R M -D S is a c o m p l e t e s y s t e m f o r t h e d e f i n i t i o n o f i n p u t a n d o u t p u t f r o m s . FORM
DS s u p p l i e s t h e a u t o m a t i c c h e c k in g o f n u m e r i c in p u t f o r a c c e p t a b le r a n g e o f v a lu e s ,
a u t o m a t i c f o r m a t t i n g o f n u m e r i c o u t p u t , a n d m a n y m o r e f e a tu r e s .
$25 D is k , A p p l e s o f t (3 2 K , R O M o r L a n g u a g e C a r d) .

UTIL-D S i s a s e t o f r o u t i n e s f o r u s e w i t h A p p l e s o f t t o f o r m a t n u m e r i c o u t p u t , s e le c ­
t iv e ly c le a r v a r ia b le s (A p p le s o f t ’ s CLEAR g e t s e v e r y t h in g) , im p r o v e e r r o r h a n d l in g ,
a n d in t e r f a c e m a c h in e la n g u a g e w i t h A p p l e s o f t p r o g r a m s . I n c lu d e s a s p e c ia l lo a d
r o u t i n e f o r p la c i n g m a c h i n e la n g u a g e r o u t i n e s u n d e r n e a t h A p p l e s o f t p r o g r a m s .
$25 D is k , A p p l e s o f t .

SPEED-DS is a r o u t i n e t o m o d i f y t h e s t a t e m e n t l i n k a g e in a n A p p l e s o f t p r o g r a m t o
s p e e d i t s e x e c u t i o n , im p r o v e m e n t s o f 5 - 2 0 % a r e c o m m o n . A s a b o n u s , SPEED-DS
in c lu d e s m a c h i n e l a n g u a g e r o u t i n e s t o s p e e d s t r in g h a n d l in g a n d r e d u c e t h e n e e d f o r
g a r b a g e c le a n - u p . A u t h o r : L e e M e a d o r .
$ 1 5 D is k , A p p l e s o f t (3 2 K , R O M o r L a n g u a g e C a r d) .

(A ddM .O O for Foreign M ail).

•A pple II is a reg iste re d tra d e m a rk of th e A pple C o m p u ter Co

106 MICRO - The 6502/6809 Journal No. 39 - August 1981

/AlCftO Dr. William R. Dial
438 Roslyn Avenue
Akron, Ohio 44320

6 5 0 2 Bibliography: Part XXXV

1025. MICRO No. 32 (January, 1981)
Davis, Robert V., "Print Using,” pg. 6.

Print Using for the OSI C1P.
Finkbeiner, Tim, "List Disable,” pg. 6.

List disable for OSI ROM BASIC.
Young, George, "Keyboard Encoding," pg. 7-14.

Add a keypad or keyboard to your 6502 micro.
Childress, J.D., "A Better Apple Search/Change,"
pg. 17-19.

An improved version of the Search/Change program for
the Apple.

Bassman, Mike, "Vectors and the Challenger IP, pg. 21.
A tutorial on Vectors and how to use them on the OSI
C1P.

Kolbe, Werner, "PET Symbolic D isassem bler,"
pg. 23-26.

This disassembler generates labels and symbols for the
critical addresses.

Flynn, Christopher J., "AIM 65 File Operations,"
pg. 29-32.

The third part of a series on AIM 65 file processing.
Tenny, Ralph, "Full Disassembly Listing on Small
Systems,” pg. 37-39.

A utility for the KIM or other small system.
Green, Len "Bridge Trainer," pg. 41-46.

A program for the SYM-1.
Wright, Loren, "PET Vet,” pg. 51.

Notes on the update for VIC, finding BASIC variables,
etc.

Neiburger, E.J., "Make a Clear Plastic Cover for Your
Apple,” pg. 53.

A constructional, how-to article related to the Apple.
Little, Gary B., "Searching String Arrays,” pg. 57-59.

An Apple matching language program to rapidly search
a large string array.

Dejong, Marvin L., "Interfacing the 6522 Versatile Inter­
face Adapter," pg. 65-72.

How to implement the 6522 on your 6502 system.
Cain, Les, "Fun With OSI,” pg. 75-76.

A checker game using C1P graphics.
Anon., "Ohio Scientific's Small Systems Journal,"
pg. 82-86.

Memory Tests, Bit Rotation Test, Pseudo-Random
Test, etc.

Staff, "MICRO Software Catalog: XXVIII,” pg. 87.
Fourteen software items for 6502 micros.

Dial, Wm. R., "6502 Bibliography: Part XXVIII,"
pg. 90-94.

Over 150 additional references to the extensive 6502
literature.

1026. Apple Bits 3, No. 1 (January, 1981J
Kovalik, Dan, "Taking the Mystery and Magic Out of
Machine Language," pg. 3-4.

This month's tutorial on machine language includes a
routine called Directory Compress, eliminating the
holes left in the directory by deleted files.

1027. Compute! 3, No. 1, Issue 8 (January, 1981)
Butterfield, Jim, "Financial Fuzzies,” pg. 22.

A numbers formatting routine for the PET.
Deemer, B.J., "Spend Time, Save Money!", pg. 22-23.

Hints on using the PET cassette.
Semancik, Susan, "Micros with the Handicapped,"
pg. 26-27.

Discussion of techniques for the handicapped (PET).
Albrecht, Bob and Firedrake, George, "The Mysterious
and Unpredictable RND: Part 1.”

A tutorial on the PET use of the RND function.
Pratto, R., "Cursor Classifications Revisited," pg. 38.

A system of classification for PET programs.
Butterfield, Jim, "Odds and Ends Re PET Cassette Tape.”

A collection of PET cassette-related hints and notes.
Falkner, Keith, "Load PET Program Tapes into the Apple
II," pg. 50-59.

A "PET Loader" for the Apple.
Dejong, Marvin L., "Programming and Interfacing the
Apple, with Experiments," pg. 61-65.

A hardware and experimental article related to the Apple.
Crawford, Chris, "Player-Missile Graphics with the Atari
Personal Computer System," pg. 66-71.

An Atari graphics tutorial.
Baker, Al, "The Fluid Brush," pg. 72-73.

A joystick-graphics program for the Atari.
Lindsay, Len, "Atari Disk Menu," pg. 74-77.

An Atari tutorial on disk menus.
Bruun, James L., "Using the Atari Console Switches,”
pg. 77.

Some hints on using those switches by the Atari
keyboard.

Beseke, Roger, "The Atari Disk Operating System,”
pg. 78-79.

A quick and brief description of what you can do with
Atari DOS.

White, Jerry, "Atari Sounds Tutorial," pg. 79-80.
Discover some of the sounds of your Atari.

Gordon, Thomas G., "A 6502 Disassembler," pg. 81-82.
A disassembler for the OSI micros.

Berger, T.R., "A Small Operating System: OS65D — The
Kernel: Part 1," pg. 84-91.

A tutorial on the OS65D system for OSI micros.
Stanford, Charles L., "OSI C1P Fast Screen Clears
Revisited,” pg. 91.

Techniques for screen clearing on OSI micros.
Mansfield, Richard, "The Screen Squeeze Fix for CBM
8000," pg. 92-93.

How to adapt programs to the new CBM 80-column
screen micros.

Herman, Harvey B., "Hooray for SYS,” pg. 96-100.
A tutorial for the SYS command for PETs, with three
listings.

Butterfield, Jim, "Scanning the Stack,” pg. 102-106.
An instructional article on PET's machine language.

No. 39 - August 1981 MICRO - The 6502/6809 Journal 107

Isaacson, Dan, "Detecting Loading Problems and
Correcting Alignment On Your PET,” pg. 114-115.

Hints on improving the reliability of the PET cassette
loading procedure.

Peterson, T.M., "Spooling for PET with 2040 Disk
Drive,” pg. 118.

Save to disk now, print later.
Levinson, V.M.D., "Variable Dump for New ROM
PETs,” pg. 118-120.

A routine to list all defined PET BASIC program
variables and give current values.

Wuchter, Earl H., "The 32K Bug," pg. 120.
A special procedure for 32K PETs to avoid screen
boundary problems.

Hudson, Arthur C., "An 'Ideal' Machine Language Save
for the PET," pg. 121-122.

A procedure for the PET.
Huckell, Gary R., "PET/CBM IEEE Bus Error,"
pg. 124-125.

An error in the PET IEEE 1/O routine and a fix.
Rehnke, Eric, "The Single Board 6502: High-Speed Data
Transfer," pg. 126-130.

Software which dumps object code from either the
AIM, SYM, or 6522-equipped Apple to a KIM board.

Hooper, Philip K., “Caveat Interrupter or Placating a
Rebellious KIM without Sacrificing RAM," pg. 132.

An experiment with a runaway KIM.
Chamberlin, Hal, "Expanding KIM-Style 6502 Single
Board Computers," pg. 138-142.

Part 1 of a series on expanding small micros.
1028. Call -Apple 4, No. 1 (January, 1981)

Goez, Eric E., "Real Variable Study,” pg. 8-23.
About numbers, scientific notation, several listings,
etc. for the Apple.

Reynolds, Lee, "Applesoft Sub-String Search Function,”
pg. 26-30.

A utility for Apple users, called Ampersand-Instr.
Function.

Zant, Robert F., "Data Storage Techniques," pg. 35-38.
An article to assist the understanding of files.

Anon., "How to Enter Call -Apple Assembly Language
Listings," pg. 39.

A short instructional article for the Apple assembly
language.

Wiggington, Randy, "Fast Garbage Collection,”
pg. 40-45.

Speed up your Apple with this utility.
Ender, Philip B., "Pascal Zap,” pg. 47-49.

A utility allowing access to any block on the disk, in­
cluding the directory and deleted files.

Lingwood, David A., "Adding Lines to Running Apple­
soft," pg. 51-53.

This assembler program can be instructed to replace
any REM statement with program code in a running
BASIC Applesoft program.

Anon., "Write -Apple," pg. 55.
Some notes on the fix for the use of Applewriter with
the Paymar Lower Case chip; also a fix for a bug on the
DOS 3.3 master disk.

Horsfall,. Richard C., "Bsaving and Bloading Arrays in
Integer BASIC and Applesoft," pg. 58-61.

Two utility listings for the Apple.

1029. Peek(65) 2, No. 1 (January, 1981)

McGuire, Dick, "Tech Notes," pg. 2-5.
Fix for packer; user defined input; cassette comer,- US
error; right justification, etc.

Wallis, Terry L., “OS65U Port #5 to Port #8 Modifica­
tion," pg. 10.

An assembly source listing to modify OS65U so that a
Port #5 command sends output to Port #8.

Grittner, Kurt, "Print Enhancements of 65D V3.0,”
pg. 15-18.

A formatting program for numbers and dollars/cents on
OSI systems.

1030. Apple Gram 3, No. 1 (January, 1981)

Matzinger, Bob, "Binary Manipulation," pg. 4-7.
How the computer handles numbers.

Meador, Lee, "MON I/NOMON I Flag," pg. 8.
A discussion of the MON function.

Carpenter, Chuck, "Apple Blossoms — For Newcomers,”
pg. 16-17.

A short introduction to assembly and machine
languages.

Hatcher, Rich, "H ello Program Improvement,"
pg. 20-21.

A Hello program for the Apple disk.

1031. Appleseed 2, No. 5 (January, 1981)

Pump, Mark, "Apple II DOS Internals," pg. 4-6.
DOS memory/disk addresses cross reference for the
Apple.

1032. Apple Assembly Line 1, Issue 4 (January, 1981)

Sander-Cederlof, Bob, 1 ‘A Calculated GOSUB for Apple­
soft," pg. 8.

Restore this useful function to Applesoft.
Sander-Cederlof, Bob, "How to Move Memory in the
Assembler,” pg. 2-6.

A tutorial on moving data with the S-C Assembler, with
two machine language listings.

Meador, Lee, "Putting COPY in S-C Assembler E," pg. 9.
How to install this function.

Laumer, Mike, "EDIT Command for S-C Assembler II,”
pg. 10-11.

Discussion and listing for a new feature for the
Assembler.

1033. Creative Computing 7, No. 1 (January, 1981)

Fee, Peter, "No PET Peeves,” pg. 24-25.
The VIC-20 is a new Commodore computer based on
the 6502 and selling under $300.

Nasman, Leonard, "Atari Music Composer Cartridge,”
pg. 26.

A music system for the Atari.
Kruse, Richard M., 1 'An Atari Library of Sound," pg. 74-78.

A series of listings for Atari sound routines from which
you can select for adding that ringing telephone, etc. to
your program.

Miller, David, " Apple-Sketch," pg. 110-118.
Ail instructional article on Hi-Res graphics, including a
program for the Apple to make things easier.

Lubar, David, "Apple II Lo-Res Shape Tables,"
pg. 120-124.

Simplify moving Lo-Res figures around by using shape
tables as is common with the Apple Hi-Res graphics.

Hitchcock, Paul, "Hi-Res Text for the Apple,"
pg. 126-129.

Embellish that Hi-Res Apple display with text. Label
the axes of graphs, etc.

Bobhop, Bish, “Lit'l Red Bug,” pg. 130-131.
A car-driving game for the Apple.

108 MICRO - The 6502/6809 Journal No. 39 - August 1981

Tunbo, David, "The Digital Couch," pg. 132-133.
Turn your Apple into a psychiatrist.

Piele, Donald T., "How to Solve It — With the Com­
puter," pg. 142-151.

Part Four on probability with a number of problems and
Apple solutions.

Yob, Gregory, "Personal Electronic Transactions,"
pg. 156-163.

A printer list program, discussion of 6502 machine
language (Monjana/1) and the big keyboard. Also a
Hangmath for PET.

Carpenter, Chuck, "Apple-Cart," pg. 170-175.
Discussion of DOS 3.3. An Applesoft BUG in the
GET/Val function.

Blank, George, "Outpost: Atari," pg. 176-179.
Discussion of bytes, nibbles and bits in digital count­
ing. Notes on Atari graphics, etc.

1034. Abacus n 3, Issue 1 (January, 1981)

Davis, James P., "Printer On Says-A-Me [Expanded],"
pg. 3-4.

Many new features added in this new listing of the.
Apple/Trencom 200/AH-g printer program.

Morris, Gary, "Apple II Disk Soft Sectoring," pg. 5-6.
Discussion of diskette nibblizing and self sync.

Davis, James P., "Update Your DOS 3 .3 ," pg. 7-8.
An update for a DOS 3.3 bug and some further
improvements, especially for those running language
cards or turnkey systems.

Smith, Paul D., "Convert Feet, and l/16ths to Decimal
Feet and Back Again," pg. 9.

A subroutine for the Apple useful to architects,
engineers, contractors, etc.

Morris, Gary, 1 'Format of Directory Information for Apple
Pascal," pg. 10-12.

An instructional article for Pascal users.
Robbins, Greg, "Bload Finder,” pg. 13.

A program to print the starting address and length in
hex of a binary program immediately after it is Bloaded.

Anon, "LAC Apnote: Tabbing with Apple Peripherals,”
pg. 14-16.

A utility for the Apple.

1035. Personal Computing 5, No. 1 (January, 1981)

Jong, Steven, "Word Processing Software Roundup,"
pg. 26-33.

A review of a number of word processors including
several for 6502 systems.

Pritchett, Robert A., "A Pseudo-Numeric Key Pad for the
Apple n ," pg. 46-47.

An inexpensive substitute for a separate numeric
keypad.

Swan, Tom, "Understanding BASIC Language Opera­
tions," pg. 68-72.

.An introduction to Applesoft, including two utility
routines, which remove REM statements from Integer
or Applesoft listings.

1036. The Harvest 2, No. 6 (February, 1981)

Anon., "More Pascal,” pg. 6-8.
Program Lookit is a primer that will display the Pascal
character set on your Apple Hi-Res screen.

1037. Apple/Sass 3, No. 1 (February, 1981)

Burger, Mike, "Text POKE Locator,” pg. 8-9.
An Apple program to find the POKE locations on the
Text Screen.

McDowell, Bob, "Integer REM Formatter.”
A short utility to assist in formatting REM statements
on the Apple.

McDowell, Bob, "Secret," pg. 12.
A routine to provide copy protection on a tape program.

Lew, Art, "READ,, DATA and Selective RESTORE,”
pg. 21.

A short utility routine for the Apple.
Lew, Art, "Musical Notes," pg. 23.

A simple sound routine for the Apple.

1038. Peelings n 2, No. 1 (January/February, 1981)

Staff, "Apple Programs Software Reviews.”
Over 20 programs for the Apple are reviewed in some
detail. Included are utilities, sound routines, personal
programs, data base management, games and miscel­
laneous discussions.

1039. Recreational Computing 9, No. 4, Issue 49
(January/February, 1981)

Walker, Robert J., "PET Budget Program," pg. 14.
This program for the PET totals expenses on a daily
basis in six categories for the week.

Lopez, Antonio, Jr., "The Key to the Education Revolu­
tion,” pg. 18-21.

A series of educational math programs, some for the
Apple or adaptable to 6502 systems.

1040. Apple-Com-Post Issue 7 (ca. February, 1980)

Goetzke, Uwe, "N eue PASCAL-|Er)kenntnisse,"
pg. 16-17.

Notes for Pascal users, including a routine for PEEK and
POKE, Integer input, etc.

Goetzke, Uwe, "Pascal-eine Einfuehrung," pg. 16.
An introduction to Apple Pascal.

Barbieri, Nino, "Program Kneipe," pg. 20.
A graphics program for the Apple.

6809 SYSTEMS (51 6809 SYSTEMS 6809 SYSTEMS Q 6809 SYSTEMS
Featuring the GfflHX mainframe with 30 amp C.V. ferro-resonant power supply: fifteen 50 pin and eight 30 pin slot Mother Board:
2 Mhz CPU with time of day clock & battery back-up, 1K RAM, 6840 programmable timer, provisions for 9511A or 9512 For ,urtfler information, pricing and brochures, contact:
Arithmetic processors, and 4 PR0M/R0M/RAM sockets that can hold up to 32KB of monitor or user software. — m
VARIETY: you can have 32KB, 56KB, 128KB and up of static RAM. You can use 5” and/or 8" disk drives, single or double A A ip q
density, single or double sided, and single or double tracking with GIMIX disk controllers. You have a wide choice of serial or (/ ■ ■ B B 1 1
parallel I/O cards. i r/i* Company that delivers
EXPANDABILITY'. You can add memory, l/Os, Video or Graphics cards, Arithmetic processors, additional drive capacity, and other Quality electronic products since w s.
hardware now or in the future to this SS50 bus structured system from GIMIX or other SS50 bus compatible manufacturers. 1337 WEST 37th PLACE, CHICAGO, IL 60609
SOFTWARE VERSATILITY: GIMIX systems can use TSC's FLEX or UNIFLEX and MICROWARE'S 0S-9 operating systems. A wide (312) 927-5510 • TWX 910-221-4055
variety of software and languages is available for these systems.
QUALITY: All boards are assembled, burned-in, and tested and feature GOLD PLATED BUS CONNECTORS. Only top quality com- GIMlr ancl GH „,TgIMa,x [^ ls,ered ,raliemarks
ponents are used and all boards are fully buffered for maximum system expansion. All boards come complete with bus connectors
and all necessary instruction and documentation. Flex and Unitlex are trademarks of Technical Systems
GIMIX designs, manufactures and tests, in-house, their complete line of products. Complete systems are available to fit your consultants inc. 0S9 is a trademark of M icroware inc See
needs. Please contact the factory if you have any special requirements. !heir ads fo f other gimix compatible software

No. 39 - August 1981 MICRO - The 6502/6809 Journal 109

1041. Apple-Com-Post Issue 8 (ca. April, 1980)

Schultz, Heinz Juergen, "Verriegelung der RESET —■
Taste beim Apple II,'' pg. 8.

Hardware mod to disable the Reset key on the Apple.
Schultz, Heinz Juergen, "Bauanleitung eines Microfon-
Verstaerkers fur Apple II-Kassetteneingang," pg. 9.

A hardware addition for the Apple to amplify the
cassette input.

1042. Apple-Com-Post Issue 10 (ca. August, 1980)

Reske, B., "HGR-Besonderheiten des ITT 2020,”
pg. 10.

Notes on Hi-Res graphics for the Apple.
Vermehr, Jochen, "Unterbrechung des Laufenden Pro-
gramms mit einer Nachricht,” pg. 1214.

An interrupt routine using an Apple clock.
Zimmermann, W., "Der Apple II Liest PET-Programme,”
pg. 15-17.

An Apple program to read PET tapes.

1043. Apple-Com-Post Issue 11 (ca. October, 1980)

Dederichs, W., "Umschalter fuer die Verschiedenen
Darstellungsformen des Apple II,” pg. 4-8.

A tutorial for the Apple.
Dietrich, M., "Einfuehrung in Assembler," pg. 9-12.

Introduction to assembly language.
Knuelle, A., "Quicksort," pg. 15-16.

Sorting in BASIC and in Pascal.
Reske, Bruno, "Pascal Echounterdrueckung u. —
Druckfiles,” pg. 17-18.

A Pascal printing program for the Apple.
1044. Apple-Com-Post Issue 12 (ca. December, 1980)

Schultz, H.J., "Umbauanleitung Apple II auf Grosz/
Kleinschreibung,” pg. 5-6.

An upper case/lower case modification for the Apple.
Dederichs, W., "Analyse des Befehls HPLOT ...T O ...,"
pg. 7-8.

All about the HPLOT command in Apple Hi-Res
graphics.

Dederichs, W., "Pascal-Text-Files Lesen," pg. 12-15.
An Applesoft program to read Pascal text files.

W E’V E G O T YOU CO VER ED
Attractive Functional Packaging
for the KIM-1, SYM-1 and AIM-65

• VITAL COMPONENTS PROTECTED
• ALL FASTENERS PROVIDED
• EASILY ASSEMBLED

DESIGNED AND
ENGINEERED SPECIFICALLY
FOR YOUR MICROCOMPUTER:

• High Quality Thermoformed Plastic*
• Molded In Color
• Available From Stock

* Rohm & Hass - KVDEX 100
SSE 1-1 for SYM-1 SAE 1-1 for AIM-65

SKE 1-1 for KIM-1

TO ORDER: 1. Fin in this coupon (Print or Type Please).
2. Attach Check or Money Order.

___ SSE 1-1 (s)(Blue) @ $39.50each ____SAE 1-1 (s)(Grey/Black) @ $46.50each

___SKE 1 -1 (s)(Beige) @ $29.50each ____SAE 1-2(s)(DeepBase) @ $49.50each

California Residents Please Add 6Vi% State Sales Tax To Total.

MAILTO: NAME__

STREET___.CITY__________________________ STATE________ ZIP.
Dealer Inquires Invited. — No C.O.D.’s Please. — Allow 2-3 Weeks for Processing and Delivery.

e n c l o s u r e s

g r o u p

786 bush street
san francisco, California 94108

TOTAL ENCLOSED: $________

110 MICRO - The 6502/6809 Journal No. 39 - August 1981

SOFTWARE FOR OSI
VIDEO GAMES 3$14.95
Three games. Meteor Mission is an asteroids game. Space Wars is a battle between
two starships. Meteor Wars is a combination of the two above games. All three are
in machine language with fast, real time action, and super graphics.

ADVENTURE: IMMORTALITY $11-95
You are an intrepid explorer searching for the fabled “ Dust o f Im m ortality” . This is
the largest adventure yet available for 8K OSI! With hidden room load so you can’t
cheat.

SUPER BUG! ...$6.95
Here's a super-fast, BASIC/Machine language hybird race game. Ten levels of
d ifficu lty and a in linate ly changing track w ill keep you challenged.

STARGATE MERCHANT $9.95
You are a trader in the distant future, traveling through 'stargates' to get to various
star systems. Part video game, part board game, always challenging.

ADVENTURE: MAROONED IN SPACE.........$11.95
An adventure that runs in 8K! Save your ship and yourself from destruction.

DUNGEON CHASE..$9.95
A real-time video game where you explore a twenty level dungeon.

DISASSEMBLER...........................$11.95
Use this to look at the ROMs in your machine to see what makes BASIC tick.
Reconstruct the assembler source code of machine language programs to
understand how they work. Our disassembler outputs unique suffixes which
identify the addressing mode being used, no other program has this!

SUPER! BIORHYTHMS................................... $14.95
A sophisticated biorhythm program w ith many unique features.

Ik F o r a l l B A S lC - in - R O M s y s te m s . S e l e c t e d p r o g r a m s a v a i l a b le

I o n d is k . C o l o r a n d s o u n d o n v id e o g a m e s .

I f W r i t e for FREE c a t a lo g
(F o r in t e r n a t i o n a l r e q u e s ts , p le a s e s u p p ly 2 o z . p o s t a g e)

D I O K I SOFTWARE ASSO.
f l 1 I N 147 Main St. Ossining, NY 10562

/AICRO

ROCKWELL AIM
USERS:

This ad will only run oncel

Due to a cancelled project, the following
hardware was never used and must be converted
to liquid cash:

2 RMS 122 64,000 byte single board
Bubble systems

2 RMS 121 32,000 byte single board
Bubble systems

4 E02119 Expansion boards

2 flam boards
2 16K Ram boards with memory

2 Experimenter boards

2 Aim 65 computers

MAIL SEALED BIDS TO:

D & F Enterprises
7000 Carroll Avenue
Takoma Park, MD 20012

Highest bidder w ill be notified.
Equipment will be shipped upon receipt of a
certified check.

Bids w ill be opened August 31,1981.

Advertisers’ Index

Advertiser's Name Page
Aardvark Technical Services...6
Abacus Software..106, 112
Andromeda, Inc... 1
Applied Analytics, Inc.. .39
Aurora Software Associates...100
Beta Computer Devices... 103
Broderbund Software..94
Central Point Software..64
Classified Ads... 75
Columbus Instruments..35
Computer Mail Order........................ ..15
The Computerist, Inc.. Cover 2
Connecticut Information Systems, Co................................... 28
Consumer Computers..76
Decision Systems...106
D&.F Enterprises... I l l
D&N Microproducts Inc... 112
Dosware Inc... .. .31
Enclosures Group...................................110
Exatron... 19
Fessenden Computer Service... 103
Galfo Systems... 64
Gimix, Inc... 109
Hogg Laboratories...112
D.R. Jarvis Computing.. 95
Lazer Systems..2
LJK Enterprises... 43
Logical Software, Inc.. 51
Micro Computer Industries... 65
MICRO INK, Inc...24, Cover 3
Microsoft Consumer Products..Cover 4
MicroSoftware Systems.. . . 51
Micro-Ware Distributing Inc...82
Mittendorf Engineering.. 13
National Computer Shows..32
Nikrom Technical Products... 64
Omega Software Systems, Inc...52
Orion Software Associates..I l l
Pegasys Systems... 95
Perry Peripherals... 112
Powersoft, Inc... 85
Progressive Computing.. 41
R.C. Electronics, Inc.. 106
Rosen Grandon Associates..95
Sensible Software.....................................96
Serendipity Systems, Inc... 106
Skyles Electric Works..18, 28, 85, 105
Small Business Computer Systems.. 95
Smartware...31
Smoke Signal Broadcasting..73
Stellation Two... 56
Technical Products...103
Terrapin, Inc... 52
Unique Data Systems.. 23
Versa Computing... 87

No. 39 - August 1981 MICRO - The 6502/6809 Journal 111

6800/6809 SOFTWARE CATALOG
PROGRAM LA N G U AG E OBJECT W /SOURCE

O N DISK

X-FORTH 6 8 0 9 /6 8 0 0 ***S 149.95

D a ta m an TSC X8AS/C $149 .95

0 a ta ra n d r s c xflAS/c 49 .95

* B ill Payer TSC XBASIC 89.95

‘ Purchase O rd e r TSC XBASIC 49 .95

‘ In com e/E xpe nse TSC XBASIC 49 .95

A ll Three TSC XBASIC 169.95

Basic P rog . Toolkit 6 8 0 9 ASM 8 $49.95 69 .95

Passw ord Protection 6 8 0 9 ASMB 69 .95 89.95

E x te n d e d U tilities 6 8 0 9 ASMB 49 .95 69 .95

Job C o n tro l P rog. 6 8 0 0 /6 8 0 9 ASMB 49 .9 5 89 .95

Esfher 6 8 0 0 /6 8 0 9 ASMS 39 .95 59 .95

Readiest 6500/6809 ASMS 54 .9 5 74.95

Help 6 8 0 0 /6 8 0 9 ASMB 29 .95 49 .95

D yna so ft Pascal 68Q9 59 .9 5 • * 89 .95

Plot TSC XBASIC 44 .95

R ead TRS80 Tapes 6 8 0 9 ASMB 5 4.95

S u pe r S leuth 6 8 0 0 /6 8 0 9 99 .00

Z80 S u pe r S leuth 6 8 0 0 /6 8 0 9 99 .00

Cross Assem blers M ACROS FOR TSC 6 8 0 9 ASMB EA. 49 .9 5

6 8 0 0 /1 , 6805, 6502, Z-80. 8080/5 3 fo r 99 .95

M a ilin g List TSC X B A S IC /6809 99.95

Forms D isp lay TSC XBAS/C/6809 49 .95

T ab u la Rasa TSC XBASIC 100.00

* * SOURCE A N D REPRODUCTION LICENSE-RUNTIME ONLY.

* * "Inc ludes e v e ry th in g b u t f/ ie co r* .

U.S.A. a d d $2 .50 fo r S ta n d a rd UPS Sh ipp ing & H and ling

Foreign orders a d d 10% S urface, 20% A irm a il.

Specify 5 " o r 8 " size disk a n d i f fo r 6800 o r 6809 system.

OUR SOFTWARE IS Q G ffllX COMPATIBLE.

OS-9 VERSIONS TO COME.

[FRANK HOGG LABORATORY, INC.
130 MIDTOWN PLAZA . SYRACUSE, N.Y. 13210

(315) 474.795*

M M M M

END FRUSTRA TIO M !
FROM CASSETTE FAILURES
PERRY PERIPHERALS HAS

THE HDE SOLUTION
OMNIDISK SYSTEMS (5" and 8")
ACCLAIMED HDE SOFTWARE
• Assembler, Dynamic Debugging Tool,

Text Output Processor, Comprehensive
Memory Test

• HDE DISK BASIC NOW AVAILABLE
PERRY PERIPHERALS S -100 PACKAGE

Adds Omnidisk (5") to
Your K IM /S -100 System

• Construction Manual—No Parts
• FODS & TED Diskette
• $20. +$2. postage & handling. (NY resident*

add 7% tax) (specify for 1 or 2 drive system)

Place your order with:
PERRY PERIPHERALS

P.O. Box 924
Miller Place, N.Y. 11764

(516) 744-6462
Your Full-Line HDE Distributor/Exporter

OSI COMPATIBLE HARDWARE
lO-CAlOX SERIAL PORT $125
ACIA based RS-232 serial printer port. DIP SWITCH selectable baud rates o f 300-9600.
Handshaking (CTS) input line is provided to signal the computer when the printer buffer
is full. Compatible w ith OS-65U V1.2 and OS-65D.
I0-CA9PARALLELPORT $175
Centronics Standard Parallel printer interface for OSI computers. The card comes com­
plete w ith 10 ft. o f flat ribbon cable. Compatible with OS-65D and OS-65U software.
IOCA9D DIABLO PARALLEL PORT $175
D IA B L012 BIT WORD Parallel port for use with word processor type printers. Complete
w ith 10 ft. cable. Compatible with OS-65U software.
IO-LEVEL 3 MULTI-USER EXPANSION $450
Provides 3 printer interfaces currently supported by OSI-Serial, Centronics Parallel,
Diablo Parallel. 4K o f memory at D000 for Multi-user executive. 4 Port serial cluster. The
LEVEL 3 card allows expansion of an OSI C3 machine up to 4 users w ith appropriate ad­
ditional memory partitions.
24MEM-CM9... $380 16MEM-CM9...S300 8MEM-CM9...$210
24K memory card is available at 3 different populated levels. All cards are fully socketed
for 24K o f memory. The card uses2114-300ns chips. DIP SWITCH addressing Is provided
in the form of one 16K block and one 8K block. Also supports DIP SWITCH memory parti­
tion addressing for use in multi-user systems.
FL470 FLOPPY DISK CONTROLLER $180
OSI-Type floppy disk controller and real time clock. W ill Support 5 1/«" or 8", Single or
double-sided drives. Requires drives with separated data and clock outputs.
B I01600 BARE IO CARD $50
Super 1/0 Card. Supports 8K of 2114 memory in two DIPSWITCH addressable4K blocks,
216 Bit Parallel Ports may be used as printer interfaces, 5 RS-232 Serial Ports w ith CTS&
RTS handshaking. W ith manual and Molex connectors.
BMEM-CM9 BARE MEMORY CARD $50
Bare 24K memory card, also supports OSI-type real time clock and floppy disk controller.
W ith manual and Molex connectors.
#96 PROTOTYPE CARD $35
Prototype board holds 96 14 or 16 pin IC’s. W ill also accommodate 18,24, or40 pin IC’s.
Row and column zone markings, easy layout. epoxy glass P.C. board.
C1 P*EXP EXPANSION INTERFACE $65
Expansion for C1P600 or610 boards to the OSI 48 Pin Buss. Uses expansion socket and
interface circuitry to expand to 48 Pii> Backplane. Requires one slot in backplane.
BP-580 BACKPLANE $47
Assembled 8-slot backplane with male Molex connectors and term ination resistors.
DSK-SW DISK SWITCH $29
A circuit when added to OSI M inifloppy systems extends the life o f drives and media. Ac­
complish this by shutting off M inifloppy Spindle motor when system is not accessing
the drive. Complete KIT and manual.
PW-5-6 POWER SUPPLY ~ $29
Power One brand supply 5V - 6 amps w ith overvoltage protection. Reg. $49.95.

D&N MICRO PRODUCTS,
IN C .

3684 N. Wells Street Ft. Wayne, Indiana 46808
219/485-6414

TERMS: Check or money order Add $2 Shipping, Outside U.S. add 10% .

\ H H L
INTERACTIVE GRAPHICS/GAME LANGUAGE

FOR THE PET/CBM
VIGIL is an e x c itin g new in te ra c tiv e lan g u ag e fo r your
P E T /C B M m ic ro . VIGIL V id eo In te ra c tiv e G am e
In te rp re tiv e Language • is an .ea s y to learn g raphics and
gam e lan g u ag e th a t le ts you q u ic k ly c re a te in te ra c tiv e
applications.
* More than 60 powerful commands permit you to easily manipulate graphics

figures on the screen

* Double density graphics give you 80 X 50 plot positions on your 40 column
PET/CBM

* Large number display capability, access to two event timers and tone generation
(if you have ext. speaker)

* Load and save your VIGIL programs to cassette or diskette

* Nine interactive programs demonstrate the power of VIGIL - Breakout,
SpaceWar, Anti Aircraft, U.F.O., SpaceBattle, Concentration, Maze, Kaleidoscope
& Fortune

* C om prehensive u ser's m anual w ith c o m p le te lis tin g s of
enclosed programs

VIGIL comes on cassette, or diskette ready to run on any 40 column
PET/CBM micro with at least 8K of memory. Specify ROM-set
w hen o rd e rin g . 6502 lis t in g of the VIGIL In te rp re te r
available separately. US & Canada Foreign
VIGIL FOR Pet/CBM on Cassette or Diskette (w/9 programs)................... $ 35$40
VIGIL User's Mannual (refundable with software)...................................$ 1 0$12
VIGIL Interpreter listing (6502 Assembly language)...............................S25..................$30
PET MACHINE LANGUAGE G U ID E ...$ 8$10

ABACUS SOFTWARE
P.O. Box 7211
Grand Rapids, Michigan 49510
(616)241-5510

Prices include postage. M ichigan residents include 4% sales tax. Orders m ust be
prepaid or via bankcard (M astercard, VISA, Eurocard, Access, etc.). Include card
num ber and expiration date.

(C) 1961 by Roy Wainwright

112 MICRO - The 6502/6809 Journal No. 39 - August 1981

. GET MORE
OUT OF
YOUR APPLE
IT
MICRO Z APPLE

MICRO’S new book for Apple II users lets you

MICRO/Apple

k Over 30 Apple Program s on D iskette — For
■ Less Than $1.00 Apiece! No Need to Type

, . In Hundreds of L ines o f Code!.

^ 224 page book and d iske tte $24.95*

H ^ A d d . $2.00 fo r surface
fTshtpping Massachusetts
[‘■.residents add 5% fo r
1 sales tax

■ Speed up programming in Applesoft and Integer BASIC!

■ Add Apple II Plus editing features — at no cost!

■ Round and format numbers accurately in business
applications!

■ Get lowercase letters and punctuation into Applesoft
strings — at no cost!

i-r.
■ Do a shape table easily and correctly!

■ Play the hit game “ Spelunker” !

■ And much, much more!

With MICRO/Apple 1, the first volume in our
new series, you receive

■ 30 choice articles from MICRO (1977-80), complete with
listings, all updated by the authors or MICRO staff,

plus

■ 38 tested programs on diskette (13 sector, 3.2 DOS
format, convertible to 3.3).

Ask for MICRO/Apple at your com puter store or

Call Toll-free 800-227-1617, Ext. 564
In California, call 800-772-3545, Ext. 564

VISA and Mastercard Accepted

MICRO
34 C helm sford Street

P.0. Box 6502
Chelm sford, M assachusetts 01824

Turn your Apple into the w orld ’s
most versatile personal computer.

The SoftCard™ Solution. SoftCard
turns your Apple into two computers.
A Z-80 and a 6502. By adding a Z-80
m icroprocessor and CP/M to your
Apple, SoftCard turns your Apple into
a CP/M based machine. That means
you can access the single largest body
of m icrocom puter software in exist­
ence. Two computers in one. And, the
advantages of both.
Plug and go. The SoftCard system
starts with a Z-80 based circuit card.
Just plug it into any slot (except 0) of
your Apple. No modifications required.
SoftCard supports most of your Apple
peripherals, and, in 6502-mode, your
Apple is still your Apple.
C P /M for your Apple. You get CP/M
on disk with the SoftCard package. It's
a powerful and simple-to-use operating
system. It supports more software
than any other microcomputer operat­
ing system. And that's the key to the
versatility of the SoftCard/Apple.

BASIC included. A powerfu l tool,
BASIC-80 is included in the SoftCard
package. Running under CP/M, ANSI
S tanda rd BA S IC -80 is the m ost
p ow e rfu l m ic ro co m p u te r BASIC
available. It includes extensive disk I/O
statements, e rror trapping, integer
variables, 16-digit precision, exten­
sive EDIT commands and string func­
tions, high and low-res Apple graphics,
PRINT USING, CHAIN and COM­
MON, plus many add itiona l com ­
mands. And, it's a BASIC you can
com pile w ith M ic ro so ft's BASIC
Compiler.
M ore languages. With SoftCard and
CP/M, you can add Microsoft's ANSI
Standard COBOL, and FORTRAN, or

Basic Com piler and Assembly Lan­
guage Development System. All, more
powerful tools for your Apple.
Seeing is believing. See the SoftCard
in operation at your Microsoft or Apple
dealer. We think you'll agree that the
SoftCard tu rns.your Apple into the
w o rld 's m ost ve rsa tile persona l
computer.
Complete information? It's at your
dealer's now. Or, we'll send it to you
and include a dealer list. Write us. Call
us.

SoftCard is a trademark of Microsoft. Apple II and
Apple II Plus are registered trademarks of Apple
Computer. Z-80 is a registered trademark of Zilog,
Inc. CP/M is a registered trademark o f Digital
Research, Inc.

CONSUMER^ PRODUCTS
Microsoft Consumer Products, 400 108th Ave. N.E.,

Bellevue, WA 98004. (206) 454-1315

